Listing 1 - 8 of 8 |
Sort by
|
Choose an application
This textbook introduces the physics and applications of transport in mesoscopic devices and nanoscale electronic systems and devices. This expanded second edition is fully updated and contains the latest research in the field, including nano-devices for qubits, from both silicon quantum dots and superconducting SQUID circuits. Each chapter has worked examples, problems and solutions, and videos are provided as supplementary material. Intended as a textbook for first-year graduate courses in nanoelectronics or mesoscopic physics, the book is also a valuable reference text for researchers interested in nanostructures, and useful supplementary reading for advanced courses in quantum mechanics and electronic devices.
Choose an application
This book introduces readers to state-of-the-art theoretical and simulation techniques for determining transport in complex band structure materials and nanostructured-geometry materials, linking the techniques developed by the electronic transport community to the materials science community. Starting from the semi-classical Boltzmann Transport Equation method for complex band structure materials, then moving on to Monte Carlo and fully quantum mechanical models for nanostructured materials, the book addresses the theory and computational complexities of each method, as well as their advantages and capabilities. Presented in language that is accessible to junior computational scientists, while including enough detail and depth with regards to numerical implementation to tackle modern research problems, it offers a valuable resource for computational scientists and postgraduate researchers whose work involves the theory and simulation of electro-thermal transport in advanced materials.
Optical materials. --- Electronic materials. --- Physics. --- Thermodynamics. --- Heat engineering. --- Heat transfer. --- Mass transfer. --- Nanotechnology. --- Energy harvesting. --- Optical and Electronic Materials. --- Numerical and Computational Physics, Simulation. --- Engineering Thermodynamics, Heat and Mass Transfer. --- Energy Harvesting. --- Electron transport. --- Energy scavenging --- Harvesting, Energy --- Power harvesting --- Force and energy --- Power resources --- Molecular technology --- Nanoscale technology --- High technology --- Mass transport (Physics) --- Thermodynamics --- Transport theory --- Heat transfer --- Thermal transfer --- Transmission of heat --- Energy transfer --- Heat --- Mechanical engineering --- Chemistry, Physical and theoretical --- Dynamics --- Mechanics --- Physics --- Heat-engines --- Quantum theory --- Natural philosophy --- Philosophy, Natural --- Physical sciences --- Electronic materials --- Optics --- Materials --- Electrons --- Energy-band theory of solids --- Free electron theory of metals
Choose an application
This book, entitled “Mesoporous Metal Oxide Films”, contains an editorial and a collection of ten research articles covering fundamental studies and applications of different metal oxide films. Mesoporous materials have been widely investigated and applied in many technological applications owing to their outstanding structural and physical properties. In this book, important developments in this fast-moving field are presented from various research groups around the world. Different preparation methods and applications of these novel and interesting materials have been reported, and it was demonstrated that mesoporosity has a direct impact on the properties and potential applications of such materials. The potential use of mesoporous metal oxide films and coatings with different morphology and structures is demonstrated in many technological applications, particularly chemical and electrochemical sensors, supercapacitors, solar cells, photoelectrodes, bioceramics, photonic switches, and anticorrosion agents.
History of engineering & technology --- SnO2 --- Metglas --- hemin --- H2O2 --- cyclic voltammetry --- magnetoelastic resonance --- sensor --- titanium dioxide --- mesoporous --- thin film --- multi-layered --- photoanode --- semiconductor --- photoelectrochemical water oxidation --- Mn2O3 --- mesoporous materials --- electrochemical characterizations --- electrode --- supercapacitors --- gadolinium oxide --- hydrazine --- p-nitrophenol --- electrochemical sensing --- amperometric --- selective sensor --- nanocrystal --- ZnO --- density of states --- optical and electrical properties --- TiO2 films --- Ag nanoparticles --- optical properties --- spectroelectrochemistry --- surface plasmon --- Fe-doped TiO2 --- hydrothermal --- GCE --- chemical sensor --- amperometry --- dye-sensitized solar cells --- working electrode --- TiO2 --- NiO nanoparticles --- electron transport --- corrosion --- guar gum --- coatings --- electrochemical impedance spectroscopy (EIS) --- SECM --- AFM --- calcium phosphate silicate --- PEG --- bioceramics --- sol-gel preparation --- hard tissue engineering --- metal oxide --- sol-gel --- supercapacitor --- photoelectrode --- dye sensitized solar cell --- NiO
Choose an application
This book, entitled “Mesoporous Metal Oxide Films”, contains an editorial and a collection of ten research articles covering fundamental studies and applications of different metal oxide films. Mesoporous materials have been widely investigated and applied in many technological applications owing to their outstanding structural and physical properties. In this book, important developments in this fast-moving field are presented from various research groups around the world. Different preparation methods and applications of these novel and interesting materials have been reported, and it was demonstrated that mesoporosity has a direct impact on the properties and potential applications of such materials. The potential use of mesoporous metal oxide films and coatings with different morphology and structures is demonstrated in many technological applications, particularly chemical and electrochemical sensors, supercapacitors, solar cells, photoelectrodes, bioceramics, photonic switches, and anticorrosion agents.
SnO2 --- Metglas --- hemin --- H2O2 --- cyclic voltammetry --- magnetoelastic resonance --- sensor --- titanium dioxide --- mesoporous --- thin film --- multi-layered --- photoanode --- semiconductor --- photoelectrochemical water oxidation --- Mn2O3 --- mesoporous materials --- electrochemical characterizations --- electrode --- supercapacitors --- gadolinium oxide --- hydrazine --- p-nitrophenol --- electrochemical sensing --- amperometric --- selective sensor --- nanocrystal --- ZnO --- density of states --- optical and electrical properties --- TiO2 films --- Ag nanoparticles --- optical properties --- spectroelectrochemistry --- surface plasmon --- Fe-doped TiO2 --- hydrothermal --- GCE --- chemical sensor --- amperometry --- dye-sensitized solar cells --- working electrode --- TiO2 --- NiO nanoparticles --- electron transport --- corrosion --- guar gum --- coatings --- electrochemical impedance spectroscopy (EIS) --- SECM --- AFM --- calcium phosphate silicate --- PEG --- bioceramics --- sol-gel preparation --- hard tissue engineering --- metal oxide --- sol-gel --- supercapacitor --- photoelectrode --- dye sensitized solar cell --- NiO
Choose an application
This book, entitled “Mesoporous Metal Oxide Films”, contains an editorial and a collection of ten research articles covering fundamental studies and applications of different metal oxide films. Mesoporous materials have been widely investigated and applied in many technological applications owing to their outstanding structural and physical properties. In this book, important developments in this fast-moving field are presented from various research groups around the world. Different preparation methods and applications of these novel and interesting materials have been reported, and it was demonstrated that mesoporosity has a direct impact on the properties and potential applications of such materials. The potential use of mesoporous metal oxide films and coatings with different morphology and structures is demonstrated in many technological applications, particularly chemical and electrochemical sensors, supercapacitors, solar cells, photoelectrodes, bioceramics, photonic switches, and anticorrosion agents.
History of engineering & technology --- SnO2 --- Metglas --- hemin --- H2O2 --- cyclic voltammetry --- magnetoelastic resonance --- sensor --- titanium dioxide --- mesoporous --- thin film --- multi-layered --- photoanode --- semiconductor --- photoelectrochemical water oxidation --- Mn2O3 --- mesoporous materials --- electrochemical characterizations --- electrode --- supercapacitors --- gadolinium oxide --- hydrazine --- p-nitrophenol --- electrochemical sensing --- amperometric --- selective sensor --- nanocrystal --- ZnO --- density of states --- optical and electrical properties --- TiO2 films --- Ag nanoparticles --- optical properties --- spectroelectrochemistry --- surface plasmon --- Fe-doped TiO2 --- hydrothermal --- GCE --- chemical sensor --- amperometry --- dye-sensitized solar cells --- working electrode --- TiO2 --- NiO nanoparticles --- electron transport --- corrosion --- guar gum --- coatings --- electrochemical impedance spectroscopy (EIS) --- SECM --- AFM --- calcium phosphate silicate --- PEG --- bioceramics --- sol-gel preparation --- hard tissue engineering --- metal oxide --- sol-gel --- supercapacitor --- photoelectrode --- dye sensitized solar cell --- NiO
Choose an application
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis and still represents one of the global health threats to mankind. The World Health Organization estimated more than 10 million new cases and reported more than 1.5 million deaths in 2019, thus ranking TB among the main causes of death due to a single pathogen. Standard anti-TB therapy includes four first-line antibiotics that should be administered for at least six months. However, in the case of multi- and extensively drug-resistant TB, second-line medications must be used and these frequently cause severe side effects resulting in poor compliance. Developing new anti-TB drug candidates is therefore of outmost importance. In this Special Issue dedicated to Tuberculosis Drug Discovery and Development, we present the main and latest achievements in the fields of drug and target discovery, host-directed therapy, anti-virulence drugs, and describe the development of two advanced compounds: macozinone and delpazolid. In addition, this Special Issue provides an historical perspective focused on Carlo Forlanini, the inventor of pneumothorax for TB treatment, and includes an overview of the state-of-the-art technologies which are being exploited nowadays in TB drug development. Finally, a summary of TB vaccines that are either approved or undergoing clinical trials concludes the Special Issue.
Research & information: general --- Biology, life sciences --- mycobacteria --- tuberculosis --- multi-drug resistance --- drug discovery --- promiscuous targets --- Mycobacterium tuberculosis --- rifampin --- isoniazid --- mechanisms of resistance --- mutations --- granulomas --- caseum --- cell envelope --- dormancy --- delpazolid --- macozinone --- DprE1 inhibitor --- clinical studies --- discovery --- mode of action --- drug resistance --- toxicity --- target --- energy metabolism --- electron transport chain --- oxidative phosphorylation --- bedaquiline --- Q203 --- MID3 --- pharmacokinetics --- pharmacodynamics --- drug-drug interactions --- in vitro --- in vivo --- drug development --- tuberculosis treatment --- biomarkers --- drug combination --- clinical trial --- BCG --- tuberculosis vaccines --- TBVI --- EDCTP --- IAVI --- CTVD --- host-directed therapy --- anti-virulence compounds --- TB --- post-treatment sequelae --- surgery --- pulmonary rehabilitation --- Carlo Forlanini --- artificial pneumothorax --- n/a --- structure-based drug design --- target-based drug design --- PknB --- PknG --- DNA gyrase --- antibiotic --- mycobacterium --- genomics --- transcriptomics --- proteomics --- metabolomics --- lipidomics --- target identification --- mechanism of action --- antimicrobial drug resistance (AMR) --- target-based screening --- phenotypic screening --- antituberculosis agents --- antimycobacterial --- anti-TB drug pipeline --- privileged targets --- lead generation
Choose an application
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis and still represents one of the global health threats to mankind. The World Health Organization estimated more than 10 million new cases and reported more than 1.5 million deaths in 2019, thus ranking TB among the main causes of death due to a single pathogen. Standard anti-TB therapy includes four first-line antibiotics that should be administered for at least six months. However, in the case of multi- and extensively drug-resistant TB, second-line medications must be used and these frequently cause severe side effects resulting in poor compliance. Developing new anti-TB drug candidates is therefore of outmost importance. In this Special Issue dedicated to Tuberculosis Drug Discovery and Development, we present the main and latest achievements in the fields of drug and target discovery, host-directed therapy, anti-virulence drugs, and describe the development of two advanced compounds: macozinone and delpazolid. In addition, this Special Issue provides an historical perspective focused on Carlo Forlanini, the inventor of pneumothorax for TB treatment, and includes an overview of the state-of-the-art technologies which are being exploited nowadays in TB drug development. Finally, a summary of TB vaccines that are either approved or undergoing clinical trials concludes the Special Issue.
mycobacteria --- tuberculosis --- multi-drug resistance --- drug discovery --- promiscuous targets --- Mycobacterium tuberculosis --- rifampin --- isoniazid --- mechanisms of resistance --- mutations --- granulomas --- caseum --- cell envelope --- dormancy --- delpazolid --- macozinone --- DprE1 inhibitor --- clinical studies --- discovery --- mode of action --- drug resistance --- toxicity --- target --- energy metabolism --- electron transport chain --- oxidative phosphorylation --- bedaquiline --- Q203 --- MID3 --- pharmacokinetics --- pharmacodynamics --- drug-drug interactions --- in vitro --- in vivo --- drug development --- tuberculosis treatment --- biomarkers --- drug combination --- clinical trial --- BCG --- tuberculosis vaccines --- TBVI --- EDCTP --- IAVI --- CTVD --- host-directed therapy --- anti-virulence compounds --- TB --- post-treatment sequelae --- surgery --- pulmonary rehabilitation --- Carlo Forlanini --- artificial pneumothorax --- n/a --- structure-based drug design --- target-based drug design --- PknB --- PknG --- DNA gyrase --- antibiotic --- mycobacterium --- genomics --- transcriptomics --- proteomics --- metabolomics --- lipidomics --- target identification --- mechanism of action --- antimicrobial drug resistance (AMR) --- target-based screening --- phenotypic screening --- antituberculosis agents --- antimycobacterial --- anti-TB drug pipeline --- privileged targets --- lead generation
Choose an application
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis and still represents one of the global health threats to mankind. The World Health Organization estimated more than 10 million new cases and reported more than 1.5 million deaths in 2019, thus ranking TB among the main causes of death due to a single pathogen. Standard anti-TB therapy includes four first-line antibiotics that should be administered for at least six months. However, in the case of multi- and extensively drug-resistant TB, second-line medications must be used and these frequently cause severe side effects resulting in poor compliance. Developing new anti-TB drug candidates is therefore of outmost importance. In this Special Issue dedicated to Tuberculosis Drug Discovery and Development, we present the main and latest achievements in the fields of drug and target discovery, host-directed therapy, anti-virulence drugs, and describe the development of two advanced compounds: macozinone and delpazolid. In addition, this Special Issue provides an historical perspective focused on Carlo Forlanini, the inventor of pneumothorax for TB treatment, and includes an overview of the state-of-the-art technologies which are being exploited nowadays in TB drug development. Finally, a summary of TB vaccines that are either approved or undergoing clinical trials concludes the Special Issue.
Research & information: general --- Biology, life sciences --- mycobacteria --- tuberculosis --- multi-drug resistance --- drug discovery --- promiscuous targets --- Mycobacterium tuberculosis --- rifampin --- isoniazid --- mechanisms of resistance --- mutations --- granulomas --- caseum --- cell envelope --- dormancy --- delpazolid --- macozinone --- DprE1 inhibitor --- clinical studies --- discovery --- mode of action --- drug resistance --- toxicity --- target --- energy metabolism --- electron transport chain --- oxidative phosphorylation --- bedaquiline --- Q203 --- MID3 --- pharmacokinetics --- pharmacodynamics --- drug-drug interactions --- in vitro --- in vivo --- drug development --- tuberculosis treatment --- biomarkers --- drug combination --- clinical trial --- BCG --- tuberculosis vaccines --- TBVI --- EDCTP --- IAVI --- CTVD --- host-directed therapy --- anti-virulence compounds --- TB --- post-treatment sequelae --- surgery --- pulmonary rehabilitation --- Carlo Forlanini --- artificial pneumothorax --- structure-based drug design --- target-based drug design --- PknB --- PknG --- DNA gyrase --- antibiotic --- mycobacterium --- genomics --- transcriptomics --- proteomics --- metabolomics --- lipidomics --- target identification --- mechanism of action --- antimicrobial drug resistance (AMR) --- target-based screening --- phenotypic screening --- antituberculosis agents --- antimycobacterial --- anti-TB drug pipeline --- privileged targets --- lead generation
Listing 1 - 8 of 8 |
Sort by
|