Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2020 (5)

Listing 1 - 5 of 5
Sort by

Book
Plasma based Synthesis and Modification of Nanomaterials
Author:
ISBN: 3039213962 3039213954 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, entitled “Plasma-Based Synthesis and Modification of Nanomaterials” is a collection of nine original research articles devoted to the application of different atmospheric pressure (APPs) and low-pressure (LPPs) plasmas for the synthesis or modification of various nanomaterials (NMs) of exceptional properties. These articles also show the structural and morphological characterization of the synthesized NMs and their further interesting and unique applications in different areas of science and technology. The readers interested in the capabilities of plasma-based treatments will quickly be convinced that APPs and LPPs enable one to efficiently synthesize or modify differentiated NMs using a minimal number of operations. Indeed, the presented procedures are eco-friendly and usually involve single-step processes, thus considerably lowering labor investment and costs. As a result, the production of new NMs and their functionalization is more straightforward and can be carried out on a much larger scale compared to other methods and procedures involving complex chemical treatments and processes. The size and morphology, as well as the structural and optical properties of the resulting NMs are tunable and tailorable. In addition to the desirable and reproducible physical dimensions, crystallinity, functionality, and spectral properties of the resultant NMs, the NMs fabricated and/or modified with the aid of APPs are commonly ready-to-use prior to their specific applications, without any initial pre-treatments.


Book
Plasma Technology for Biomedical Applications
Author:
ISBN: 3039287370 3039287362 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

There is growing interest in the use of physical plasmas (ionized gases) for biomedical applications, especially in the framework of so-called “plasma medicine”, which exploits the action of low-power, atmospheric pressure plasmas for therapeutic purposes. Such plasmas are “cold plasmas”, in the sense that only electrons have a high temperature, whereas ions and the neutral gas particles are at or near room temperature. As a consequence, the “plasma flame” can be directly applied to living matter without appreciable thermal load. Reactive chemical species, charged particles, visible and UV radiation, and electric fields are interaction channels of the plasma with pathogens, cells, and tissues, which can trigger a variety of different responses. Possible applications include disinfection, wound healing, cancer treatment, non-thermal blood coagulation, just to mention some. The understanding of the mechanisms of plasma action on living matter requires a strongly interdisciplinary approach, with competencies ranging from plasma physics and technology to chemistry, to biology and finally to medicine. This book is a collection of work that explores recent advances in this field.


Book
Biomaterial-Related Infections
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The use of medical devices (e.g., catheters, implants, and probes) is a common and essential part of medical care for both diagnostic and therapeutic purposes. However, these devices quite frequently lead to the incidence of infections due to the colonization of their abiotic surfaces by biofilm-growing microorganisms, which are progressively resistant to antimicrobial therapies. Several methods based on anti-infective biomaterials that repel microbes have been developed to combat device-related infections. Among these strategies, surface coating with antibiotics (e.g., beta-lactams), natural compounds (e.g., polyphenols), or inorganic elements (e.g., silver and copper nanoparticles) has been widely recognized as exhibiting broad-spectrum bactericidal or bacteriostatic activity. So, in order to achieve a better therapeutic response, it is crucial to understand how these infections are different from others. This will allow us to find new biomaterials characterized by antifouling coatings with repellent properties or low adhesion towards microorganisms, or antimicrobial coatings that are capable of killing microbes approaching the surface, improving biomaterial functionalization strategies and supporting tissues’ bio-integration.


Book
Biomaterial-Related Infections
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The use of medical devices (e.g., catheters, implants, and probes) is a common and essential part of medical care for both diagnostic and therapeutic purposes. However, these devices quite frequently lead to the incidence of infections due to the colonization of their abiotic surfaces by biofilm-growing microorganisms, which are progressively resistant to antimicrobial therapies. Several methods based on anti-infective biomaterials that repel microbes have been developed to combat device-related infections. Among these strategies, surface coating with antibiotics (e.g., beta-lactams), natural compounds (e.g., polyphenols), or inorganic elements (e.g., silver and copper nanoparticles) has been widely recognized as exhibiting broad-spectrum bactericidal or bacteriostatic activity. So, in order to achieve a better therapeutic response, it is crucial to understand how these infections are different from others. This will allow us to find new biomaterials characterized by antifouling coatings with repellent properties or low adhesion towards microorganisms, or antimicrobial coatings that are capable of killing microbes approaching the surface, improving biomaterial functionalization strategies and supporting tissues’ bio-integration.


Book
Biomaterial-Related Infections
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The use of medical devices (e.g., catheters, implants, and probes) is a common and essential part of medical care for both diagnostic and therapeutic purposes. However, these devices quite frequently lead to the incidence of infections due to the colonization of their abiotic surfaces by biofilm-growing microorganisms, which are progressively resistant to antimicrobial therapies. Several methods based on anti-infective biomaterials that repel microbes have been developed to combat device-related infections. Among these strategies, surface coating with antibiotics (e.g., beta-lactams), natural compounds (e.g., polyphenols), or inorganic elements (e.g., silver and copper nanoparticles) has been widely recognized as exhibiting broad-spectrum bactericidal or bacteriostatic activity. So, in order to achieve a better therapeutic response, it is crucial to understand how these infections are different from others. This will allow us to find new biomaterials characterized by antifouling coatings with repellent properties or low adhesion towards microorganisms, or antimicrobial coatings that are capable of killing microbes approaching the surface, improving biomaterial functionalization strategies and supporting tissues’ bio-integration.

Listing 1 - 5 of 5
Sort by