Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Biographical note: Maik Eckardt ist selbstständiger 3D-Grafiker und CINEMA 4D-Trainer u.a. am SAE-Institute, am Institute of Design (IN.D), an der Berliner Technischen Kunsthochschule (BTK) und für das Nemetschek-Competence Center. Long description:
buch --- Animation --- rendern --- cinema 4d --- 3d animation --- 3d design --- 3d figuren --- 3d grafik --- 3d model --- 3d modellierung --- 3d programm --- 3d software --- 3d visualisierung --- 3d zeichenprogramm --- animation design --- cinema 4d models --- cinema 4d plugins --- Cinema 4d R22 --- maxon --- motion capture
Choose an application
Remote image capture systems are a key element in efficient and sustainable agriculture nowadays. They are increasingly being used to obtain information of interest from the crops, the soil and the environment. It includes different types of capturing devices: from satellites and drones, to in-field devices; different types of spectral information, from visible RGB images, to multispectral images; different types of applications; and different types of techniques in the areas of image processing, computer vision, pattern recognition and machine learning. This book covers all these aspects, through a series of chapters that describe specific recent applications of these techniques in interesting problems of agricultural engineering.
History of engineering & technology --- SVM --- budding rate --- UAV --- geometric consistency --- radiometric consistency --- point clouds --- ICP --- reflectance maps --- vegetation indices --- Parrot Sequoia --- artificial intelligence --- precision agriculture --- agricultural robot --- optimization algorithm --- online operation --- segmentation --- coffee leaf rust --- machine learning --- deep learning --- remote sensing --- Fourth Industrial Revolution --- Agriculture 4.0 --- failure strain --- sandstone --- digital image correlation --- Hill–Tsai failure criterion --- finite element method --- reference evapotranspiration --- moisture sensors --- machine learning regression --- frequency-domain reflectometry --- randomizable filtered classifier --- convolutional neural network --- U-Net --- land use --- banana plantation --- Panama TR4 --- aerial photography --- remote images --- systematic mapping study --- agriculture --- applications --- total leaf area --- mixed pixels --- Cabernet Sauvignon --- NDVI --- Normalized Difference Vegetation Index --- precision viticulture --- 3D model --- spatial vision --- fertirrigation --- teaching–learning --- spectrometry --- Sentinel-2 --- pasture quality index --- normalized difference vegetation index --- normalized difference water index --- supplementation --- decision making --- digital agriculture --- grape yield estimate --- berries counting --- Dilated CNN --- machine learning algorithms --- classification performance --- winter wheat mapping --- large-scale --- water stress --- Prunus avium L. --- stem water potential --- low-cost thermography --- thermal indexes --- canopy temperature --- non-water-stressed baselines --- non-transpiration baseline --- soil moisture --- andosols --- image processing --- greenhouse --- automatic tomato harvesting --- n/a --- Hill-Tsai failure criterion --- teaching-learning
Choose an application
Even today, cardiovascular diseases are the main cause of death worldwide, and therapeutic approaches are very restricted. Due to the limited regenerative capabilities of terminally differentiated cardiomyocytes post injury, new strategies to treat cardiac patients are urgently needed. Post myocardial injury, resident fibroblasts begin to generate the extracellular matrix, resulting in fibrosis, and finally, cardiac failure. Recently, preclinical investigations and clinical trials raised hope in stem cell-based approaches, to be an effective therapy option for these diseases. So far, several types of stem cells have been identified to be promising candidates to be applied for treatment: cardiac progenitor cells, bone marrow derived stem cells, embryonic and induced pluripotent stem cells, as well as their descendants. Furthermore, the innovative techniques of direct cardiac reprogramming of cells offered promising options for cardiovascular research, in vitro and in vivo. Hereby, the investigation of underlying and associated mechanisms triggering the therapeutic effects of stem cell application is of particular importance to improve approaches for heart patients. This Special Issue of Cells provides the latest update in the rapidly developing field of regenerative medicine in cardiology.
Research & information: general --- Biology, life sciences --- Fabry disease --- human embryonic stem cells --- CRISPR/Cas9 genomic editing --- Mass spectrometry proteomic analysis --- hypertrophic cardiomyopathy --- disease model --- physical exercise --- cardiac cellular regeneration --- microRNA (miR) --- Akt signaling --- cardiomyocyte proliferation --- cardiac hypertrophy --- cardioprotection --- myocarditis --- inflammation --- leukocytes --- cardiomyocytes --- multi-electrode-array --- micro-electrode-array --- MEA --- drug/toxicity screening --- field potential --- arrhythmia --- electrocardiography --- cardiac regeneration --- stem cells --- iPSC --- PSC --- ESC --- cardiovascular disease --- regeneration --- cardiac progenitor cells --- induced pluripotent stem cells --- transdifferentiation --- direct reprogramming --- genetic engineering --- cardiac tissue engineering --- biomaterials --- 18F-FDG PET --- cardiac induced cells --- cardiac function --- non-invasive imaging --- human pluripotent stem cell --- ventricular --- maturation --- bone marrow stem cells --- angiogenesis --- myocardial infarction --- human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) --- iPS cells --- big conductance calcium activated potassium channel (BK) --- Maxi-K --- slo1 --- KCa1.1 --- iberiotoxin --- long QT syndrome --- mesenchymal stromal cells (MSC) --- mRNA --- miRNA --- cardiac reprogramming --- cardiac differentiation --- cardiovascular diseases --- adult stem cells --- myocardial infraction --- 3D printing --- 3D model --- bioprinting --- cardiovascular medicine --- heart --- myocardium --- heart valves --- vascular graft --- endothelialization --- tissue engineering --- decorin --- fibronectin --- electrospinning --- endothelial progenitor cells --- bioreactor --- biostable polyurethane --- MicroRNA --- Mir-133 --- coronary heart disease --- biomarker --- meta-analysis
Choose an application
Remote image capture systems are a key element in efficient and sustainable agriculture nowadays. They are increasingly being used to obtain information of interest from the crops, the soil and the environment. It includes different types of capturing devices: from satellites and drones, to in-field devices; different types of spectral information, from visible RGB images, to multispectral images; different types of applications; and different types of techniques in the areas of image processing, computer vision, pattern recognition and machine learning. This book covers all these aspects, through a series of chapters that describe specific recent applications of these techniques in interesting problems of agricultural engineering.
SVM --- budding rate --- UAV --- geometric consistency --- radiometric consistency --- point clouds --- ICP --- reflectance maps --- vegetation indices --- Parrot Sequoia --- artificial intelligence --- precision agriculture --- agricultural robot --- optimization algorithm --- online operation --- segmentation --- coffee leaf rust --- machine learning --- deep learning --- remote sensing --- Fourth Industrial Revolution --- Agriculture 4.0 --- failure strain --- sandstone --- digital image correlation --- Hill–Tsai failure criterion --- finite element method --- reference evapotranspiration --- moisture sensors --- machine learning regression --- frequency-domain reflectometry --- randomizable filtered classifier --- convolutional neural network --- U-Net --- land use --- banana plantation --- Panama TR4 --- aerial photography --- remote images --- systematic mapping study --- agriculture --- applications --- total leaf area --- mixed pixels --- Cabernet Sauvignon --- NDVI --- Normalized Difference Vegetation Index --- precision viticulture --- 3D model --- spatial vision --- fertirrigation --- teaching–learning --- spectrometry --- Sentinel-2 --- pasture quality index --- normalized difference vegetation index --- normalized difference water index --- supplementation --- decision making --- digital agriculture --- grape yield estimate --- berries counting --- Dilated CNN --- machine learning algorithms --- classification performance --- winter wheat mapping --- large-scale --- water stress --- Prunus avium L. --- stem water potential --- low-cost thermography --- thermal indexes --- canopy temperature --- non-water-stressed baselines --- non-transpiration baseline --- soil moisture --- andosols --- image processing --- greenhouse --- automatic tomato harvesting --- n/a --- Hill-Tsai failure criterion --- teaching-learning
Choose an application
Even today, cardiovascular diseases are the main cause of death worldwide, and therapeutic approaches are very restricted. Due to the limited regenerative capabilities of terminally differentiated cardiomyocytes post injury, new strategies to treat cardiac patients are urgently needed. Post myocardial injury, resident fibroblasts begin to generate the extracellular matrix, resulting in fibrosis, and finally, cardiac failure. Recently, preclinical investigations and clinical trials raised hope in stem cell-based approaches, to be an effective therapy option for these diseases. So far, several types of stem cells have been identified to be promising candidates to be applied for treatment: cardiac progenitor cells, bone marrow derived stem cells, embryonic and induced pluripotent stem cells, as well as their descendants. Furthermore, the innovative techniques of direct cardiac reprogramming of cells offered promising options for cardiovascular research, in vitro and in vivo. Hereby, the investigation of underlying and associated mechanisms triggering the therapeutic effects of stem cell application is of particular importance to improve approaches for heart patients. This Special Issue of Cells provides the latest update in the rapidly developing field of regenerative medicine in cardiology.
Fabry disease --- human embryonic stem cells --- CRISPR/Cas9 genomic editing --- Mass spectrometry proteomic analysis --- hypertrophic cardiomyopathy --- disease model --- physical exercise --- cardiac cellular regeneration --- microRNA (miR) --- Akt signaling --- cardiomyocyte proliferation --- cardiac hypertrophy --- cardioprotection --- myocarditis --- inflammation --- leukocytes --- cardiomyocytes --- multi-electrode-array --- micro-electrode-array --- MEA --- drug/toxicity screening --- field potential --- arrhythmia --- electrocardiography --- cardiac regeneration --- stem cells --- iPSC --- PSC --- ESC --- cardiovascular disease --- regeneration --- cardiac progenitor cells --- induced pluripotent stem cells --- transdifferentiation --- direct reprogramming --- genetic engineering --- cardiac tissue engineering --- biomaterials --- 18F-FDG PET --- cardiac induced cells --- cardiac function --- non-invasive imaging --- human pluripotent stem cell --- ventricular --- maturation --- bone marrow stem cells --- angiogenesis --- myocardial infarction --- human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) --- iPS cells --- big conductance calcium activated potassium channel (BK) --- Maxi-K --- slo1 --- KCa1.1 --- iberiotoxin --- long QT syndrome --- mesenchymal stromal cells (MSC) --- mRNA --- miRNA --- cardiac reprogramming --- cardiac differentiation --- cardiovascular diseases --- adult stem cells --- myocardial infraction --- 3D printing --- 3D model --- bioprinting --- cardiovascular medicine --- heart --- myocardium --- heart valves --- vascular graft --- endothelialization --- tissue engineering --- decorin --- fibronectin --- electrospinning --- endothelial progenitor cells --- bioreactor --- biostable polyurethane --- MicroRNA --- Mir-133 --- coronary heart disease --- biomarker --- meta-analysis
Choose an application
Even today, cardiovascular diseases are the main cause of death worldwide, and therapeutic approaches are very restricted. Due to the limited regenerative capabilities of terminally differentiated cardiomyocytes post injury, new strategies to treat cardiac patients are urgently needed. Post myocardial injury, resident fibroblasts begin to generate the extracellular matrix, resulting in fibrosis, and finally, cardiac failure. Recently, preclinical investigations and clinical trials raised hope in stem cell-based approaches, to be an effective therapy option for these diseases. So far, several types of stem cells have been identified to be promising candidates to be applied for treatment: cardiac progenitor cells, bone marrow derived stem cells, embryonic and induced pluripotent stem cells, as well as their descendants. Furthermore, the innovative techniques of direct cardiac reprogramming of cells offered promising options for cardiovascular research, in vitro and in vivo. Hereby, the investigation of underlying and associated mechanisms triggering the therapeutic effects of stem cell application is of particular importance to improve approaches for heart patients. This Special Issue of Cells provides the latest update in the rapidly developing field of regenerative medicine in cardiology.
Research & information: general --- Biology, life sciences --- Fabry disease --- human embryonic stem cells --- CRISPR/Cas9 genomic editing --- Mass spectrometry proteomic analysis --- hypertrophic cardiomyopathy --- disease model --- physical exercise --- cardiac cellular regeneration --- microRNA (miR) --- Akt signaling --- cardiomyocyte proliferation --- cardiac hypertrophy --- cardioprotection --- myocarditis --- inflammation --- leukocytes --- cardiomyocytes --- multi-electrode-array --- micro-electrode-array --- MEA --- drug/toxicity screening --- field potential --- arrhythmia --- electrocardiography --- cardiac regeneration --- stem cells --- iPSC --- PSC --- ESC --- cardiovascular disease --- regeneration --- cardiac progenitor cells --- induced pluripotent stem cells --- transdifferentiation --- direct reprogramming --- genetic engineering --- cardiac tissue engineering --- biomaterials --- 18F-FDG PET --- cardiac induced cells --- cardiac function --- non-invasive imaging --- human pluripotent stem cell --- ventricular --- maturation --- bone marrow stem cells --- angiogenesis --- myocardial infarction --- human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) --- iPS cells --- big conductance calcium activated potassium channel (BK) --- Maxi-K --- slo1 --- KCa1.1 --- iberiotoxin --- long QT syndrome --- mesenchymal stromal cells (MSC) --- mRNA --- miRNA --- cardiac reprogramming --- cardiac differentiation --- cardiovascular diseases --- adult stem cells --- myocardial infraction --- 3D printing --- 3D model --- bioprinting --- cardiovascular medicine --- heart --- myocardium --- heart valves --- vascular graft --- endothelialization --- tissue engineering --- decorin --- fibronectin --- electrospinning --- endothelial progenitor cells --- bioreactor --- biostable polyurethane --- MicroRNA --- Mir-133 --- coronary heart disease --- biomarker --- meta-analysis
Choose an application
Remote image capture systems are a key element in efficient and sustainable agriculture nowadays. They are increasingly being used to obtain information of interest from the crops, the soil and the environment. It includes different types of capturing devices: from satellites and drones, to in-field devices; different types of spectral information, from visible RGB images, to multispectral images; different types of applications; and different types of techniques in the areas of image processing, computer vision, pattern recognition and machine learning. This book covers all these aspects, through a series of chapters that describe specific recent applications of these techniques in interesting problems of agricultural engineering.
History of engineering & technology --- SVM --- budding rate --- UAV --- geometric consistency --- radiometric consistency --- point clouds --- ICP --- reflectance maps --- vegetation indices --- Parrot Sequoia --- artificial intelligence --- precision agriculture --- agricultural robot --- optimization algorithm --- online operation --- segmentation --- coffee leaf rust --- machine learning --- deep learning --- remote sensing --- Fourth Industrial Revolution --- Agriculture 4.0 --- failure strain --- sandstone --- digital image correlation --- Hill-Tsai failure criterion --- finite element method --- reference evapotranspiration --- moisture sensors --- machine learning regression --- frequency-domain reflectometry --- randomizable filtered classifier --- convolutional neural network --- U-Net --- land use --- banana plantation --- Panama TR4 --- aerial photography --- remote images --- systematic mapping study --- agriculture --- applications --- total leaf area --- mixed pixels --- Cabernet Sauvignon --- NDVI --- Normalized Difference Vegetation Index --- precision viticulture --- 3D model --- spatial vision --- fertirrigation --- teaching-learning --- spectrometry --- Sentinel-2 --- pasture quality index --- normalized difference vegetation index --- normalized difference water index --- supplementation --- decision making --- digital agriculture --- grape yield estimate --- berries counting --- Dilated CNN --- machine learning algorithms --- classification performance --- winter wheat mapping --- large-scale --- water stress --- Prunus avium L. --- stem water potential --- low-cost thermography --- thermal indexes --- canopy temperature --- non-water-stressed baselines --- non-transpiration baseline --- soil moisture --- andosols --- image processing --- greenhouse --- automatic tomato harvesting
Listing 1 - 7 of 7 |
Sort by
|