Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Multiple-input, multiple-output (MIMO), which transmits multiple data streams via multiple antenna elements, is one of the most attractive technologies in the wireless communication field. Its extension, called ‘massive MIMO’ or ‘large-scale MIMO’, in which base station has over one hundred of the antenna elements, is now seen as a promising candidate to realize 5G and beyond, as well as 6G mobile communications. It has been the first decade since its fundamental concept emerged. This Special Issue consists of 19 papers and each of them focuses on a popular topic related to massive MIMO systems, e.g. analog/digital hybrid signal processing, antenna fabrication, and machine learning incorporation. These achievements could boost its realization and deepen the academic and industrial knowledge of this field.
History of engineering & technology --- Energy industries & utilities --- distributed massive MIMO --- phase noise --- amplified thermal noise --- spectral efficiency --- 5G --- massive MIMO --- computational efficiency --- precoding algorithms --- channel estimation --- far-field --- antenna array --- diagnosis procedure --- noisy data --- BCS --- millimeter-wave --- energy efficiency --- pilot contamination --- quantization noise --- massive multi-input multi-output (MIMO) --- distributed antenna systems (DAS) --- sounding reference signal (SRS) --- Massive MIMO --- pilot decontamination --- MSE --- dynamic user scheduling --- dynamic pilot allocation --- beamforming --- line-of-sight --- Ricean fading --- frequency-selective --- power scaling --- hybrid beamforming --- HetNets --- mmWaves --- analog multi-beam --- hybrid beam-forming --- PHY layer --- MAC layer --- pilot assignment --- large-scale fading coefficients --- Bayesian inference --- overcomplete dictionary --- diamond-ring slot --- dual-polarized antenna --- mobile-phone antenna --- pattern diversity --- Metamaterials (MTM) --- leaky-wave antenna (LWA) --- antenna arrays --- substrate integrated waveguide (SIW) --- transverse slots --- beam-scanning --- mutual coupling isolation --- millimetre-wave --- composite right/left-handed transmission line (CRLH-TL) --- 5G wireless networks --- non-coherent detection --- QAM --- multi-user MIMO --- space division multiple access (SDMA) --- block diagonalization (BD) --- non-orthogonal multiple access (NOMA) --- broadcast channel --- discontinuous deception --- multiple beam communications --- artificial intelligence --- wireless communications --- non-orthogonal unicast and multicast transmission --- statistical channel state information --- beam domain --- massive MIMO systems --- MIDE algorithm --- low computational complexity --- BER --- resource allocation --- n/a
Choose an application
This book addresses the true innovation in engineering design that may be promoted by blending together models and methodologies from different disciplines, and, in this book, the target was exactly to follow this approach to deliver a new disruptive architecture to deliver these next-generation mobile small cell technologies. According to this design philosophy, the work within this book resides in the intersection of engineering paradigms that includes “cooperation”, “network coding”, and “smart energy-aware frontends”. These technologies will not only be considered as individual building blocks, but re-engineered according to an inter-design approach resulting in the enabler for energy efficient femtocell-like services on the move. The book aims to narrow the gap between the current networking technologies and the foreseen requirements that are targeted at the future development of the 5G mobile and wireless communications networks in terms of the higher networking capacity, the ability to support more users, the lower cost per bit, the enhanced energy efficiency, and adaptability to new services and devices (for example, smart cities, and the Internet of things (IoT)).
History of engineering & technology --- microstrip --- tuneable filter --- microwave filter --- 5G --- MEMSs --- varactor --- 4G --- CR --- MIMO --- reconfigurable antenna --- switch --- UWB --- WiMAX --- WLAN --- wireless communications --- cooperative NOMA --- multi-points DF relaying nodes --- half-duplex --- full-duplex --- Rayleigh fading channels --- Nakagami-m fading channels --- energy harvesting --- non-orthogonal multiple access --- multiple antenna --- transmit antenna selection --- outage probability --- pattern reconfigurable --- patch antenna --- s-parameters --- frequency reconfigurable --- dual-band Doherty power amplifier --- LTE-advanced --- high-efficiency --- phase offset lines --- impedance inverter network --- phase compensation network --- High power amplifiers --- high efficiency --- Doherty power amplifier --- GaN-HEMT --- small cell --- maximum transmit power --- UE --- open-loop power control --- interference --- ergodic capacity --- non-linear energy harvesting --- NOMA --- monopole antenna --- S-parameters --- 5G, 4/4.5G --- LTE --- ISM --- WiFi --- 5G antenna --- slot antenna --- mobile terminal antenna --- MIMO antenna --- medical applications --- miniaturized antenna --- arc-shaped --- dual-band --- chiral --- Tellegen --- multilayer CPW structure --- dispersion characteristics --- full-GEMT --- Muller’s method --- complex propagation constant --- acceleration procedure --- ISM 2.4 GHz --- isolation --- envelope correlation coefficient (ECC) --- channel capacity loss (CCL) --- 5G technology --- CPW-fed antenna --- diversity antenna --- future smartphones --- MIMO systems --- n/a --- Muller's method
Choose an application
Multiple-input, multiple-output (MIMO), which transmits multiple data streams via multiple antenna elements, is one of the most attractive technologies in the wireless communication field. Its extension, called ‘massive MIMO’ or ‘large-scale MIMO’, in which base station has over one hundred of the antenna elements, is now seen as a promising candidate to realize 5G and beyond, as well as 6G mobile communications. It has been the first decade since its fundamental concept emerged. This Special Issue consists of 19 papers and each of them focuses on a popular topic related to massive MIMO systems, e.g. analog/digital hybrid signal processing, antenna fabrication, and machine learning incorporation. These achievements could boost its realization and deepen the academic and industrial knowledge of this field.
distributed massive MIMO --- phase noise --- amplified thermal noise --- spectral efficiency --- 5G --- massive MIMO --- computational efficiency --- precoding algorithms --- channel estimation --- far-field --- antenna array --- diagnosis procedure --- noisy data --- BCS --- millimeter-wave --- energy efficiency --- pilot contamination --- quantization noise --- massive multi-input multi-output (MIMO) --- distributed antenna systems (DAS) --- sounding reference signal (SRS) --- Massive MIMO --- pilot decontamination --- MSE --- dynamic user scheduling --- dynamic pilot allocation --- beamforming --- line-of-sight --- Ricean fading --- frequency-selective --- power scaling --- hybrid beamforming --- HetNets --- mmWaves --- analog multi-beam --- hybrid beam-forming --- PHY layer --- MAC layer --- pilot assignment --- large-scale fading coefficients --- Bayesian inference --- overcomplete dictionary --- diamond-ring slot --- dual-polarized antenna --- mobile-phone antenna --- pattern diversity --- Metamaterials (MTM) --- leaky-wave antenna (LWA) --- antenna arrays --- substrate integrated waveguide (SIW) --- transverse slots --- beam-scanning --- mutual coupling isolation --- millimetre-wave --- composite right/left-handed transmission line (CRLH-TL) --- 5G wireless networks --- non-coherent detection --- QAM --- multi-user MIMO --- space division multiple access (SDMA) --- block diagonalization (BD) --- non-orthogonal multiple access (NOMA) --- broadcast channel --- discontinuous deception --- multiple beam communications --- artificial intelligence --- wireless communications --- non-orthogonal unicast and multicast transmission --- statistical channel state information --- beam domain --- massive MIMO systems --- MIDE algorithm --- low computational complexity --- BER --- resource allocation --- n/a
Choose an application
This book addresses the true innovation in engineering design that may be promoted by blending together models and methodologies from different disciplines, and, in this book, the target was exactly to follow this approach to deliver a new disruptive architecture to deliver these next-generation mobile small cell technologies. According to this design philosophy, the work within this book resides in the intersection of engineering paradigms that includes “cooperation”, “network coding”, and “smart energy-aware frontends”. These technologies will not only be considered as individual building blocks, but re-engineered according to an inter-design approach resulting in the enabler for energy efficient femtocell-like services on the move. The book aims to narrow the gap between the current networking technologies and the foreseen requirements that are targeted at the future development of the 5G mobile and wireless communications networks in terms of the higher networking capacity, the ability to support more users, the lower cost per bit, the enhanced energy efficiency, and adaptability to new services and devices (for example, smart cities, and the Internet of things (IoT)).
microstrip --- tuneable filter --- microwave filter --- 5G --- MEMSs --- varactor --- 4G --- CR --- MIMO --- reconfigurable antenna --- switch --- UWB --- WiMAX --- WLAN --- wireless communications --- cooperative NOMA --- multi-points DF relaying nodes --- half-duplex --- full-duplex --- Rayleigh fading channels --- Nakagami-m fading channels --- energy harvesting --- non-orthogonal multiple access --- multiple antenna --- transmit antenna selection --- outage probability --- pattern reconfigurable --- patch antenna --- s-parameters --- frequency reconfigurable --- dual-band Doherty power amplifier --- LTE-advanced --- high-efficiency --- phase offset lines --- impedance inverter network --- phase compensation network --- High power amplifiers --- high efficiency --- Doherty power amplifier --- GaN-HEMT --- small cell --- maximum transmit power --- UE --- open-loop power control --- interference --- ergodic capacity --- non-linear energy harvesting --- NOMA --- monopole antenna --- S-parameters --- 5G, 4/4.5G --- LTE --- ISM --- WiFi --- 5G antenna --- slot antenna --- mobile terminal antenna --- MIMO antenna --- medical applications --- miniaturized antenna --- arc-shaped --- dual-band --- chiral --- Tellegen --- multilayer CPW structure --- dispersion characteristics --- full-GEMT --- Muller’s method --- complex propagation constant --- acceleration procedure --- ISM 2.4 GHz --- isolation --- envelope correlation coefficient (ECC) --- channel capacity loss (CCL) --- 5G technology --- CPW-fed antenna --- diversity antenna --- future smartphones --- MIMO systems --- n/a --- Muller's method
Choose an application
This book addresses the true innovation in engineering design that may be promoted by blending together models and methodologies from different disciplines, and, in this book, the target was exactly to follow this approach to deliver a new disruptive architecture to deliver these next-generation mobile small cell technologies. According to this design philosophy, the work within this book resides in the intersection of engineering paradigms that includes “cooperation”, “network coding”, and “smart energy-aware frontends”. These technologies will not only be considered as individual building blocks, but re-engineered according to an inter-design approach resulting in the enabler for energy efficient femtocell-like services on the move. The book aims to narrow the gap between the current networking technologies and the foreseen requirements that are targeted at the future development of the 5G mobile and wireless communications networks in terms of the higher networking capacity, the ability to support more users, the lower cost per bit, the enhanced energy efficiency, and adaptability to new services and devices (for example, smart cities, and the Internet of things (IoT)).
History of engineering & technology --- microstrip --- tuneable filter --- microwave filter --- 5G --- MEMSs --- varactor --- 4G --- CR --- MIMO --- reconfigurable antenna --- switch --- UWB --- WiMAX --- WLAN --- wireless communications --- cooperative NOMA --- multi-points DF relaying nodes --- half-duplex --- full-duplex --- Rayleigh fading channels --- Nakagami-m fading channels --- energy harvesting --- non-orthogonal multiple access --- multiple antenna --- transmit antenna selection --- outage probability --- pattern reconfigurable --- patch antenna --- s-parameters --- frequency reconfigurable --- dual-band Doherty power amplifier --- LTE-advanced --- high-efficiency --- phase offset lines --- impedance inverter network --- phase compensation network --- High power amplifiers --- high efficiency --- Doherty power amplifier --- GaN-HEMT --- small cell --- maximum transmit power --- UE --- open-loop power control --- interference --- ergodic capacity --- non-linear energy harvesting --- NOMA --- monopole antenna --- S-parameters --- 5G, 4/4.5G --- LTE --- ISM --- WiFi --- 5G antenna --- slot antenna --- mobile terminal antenna --- MIMO antenna --- medical applications --- miniaturized antenna --- arc-shaped --- dual-band --- chiral --- Tellegen --- multilayer CPW structure --- dispersion characteristics --- full-GEMT --- Muller's method --- complex propagation constant --- acceleration procedure --- ISM 2.4 GHz --- isolation --- envelope correlation coefficient (ECC) --- channel capacity loss (CCL) --- 5G technology --- CPW-fed antenna --- diversity antenna --- future smartphones --- MIMO systems
Choose an application
Multiple-input, multiple-output (MIMO), which transmits multiple data streams via multiple antenna elements, is one of the most attractive technologies in the wireless communication field. Its extension, called ‘massive MIMO’ or ‘large-scale MIMO’, in which base station has over one hundred of the antenna elements, is now seen as a promising candidate to realize 5G and beyond, as well as 6G mobile communications. It has been the first decade since its fundamental concept emerged. This Special Issue consists of 19 papers and each of them focuses on a popular topic related to massive MIMO systems, e.g. analog/digital hybrid signal processing, antenna fabrication, and machine learning incorporation. These achievements could boost its realization and deepen the academic and industrial knowledge of this field.
History of engineering & technology --- Energy industries & utilities --- distributed massive MIMO --- phase noise --- amplified thermal noise --- spectral efficiency --- 5G --- massive MIMO --- computational efficiency --- precoding algorithms --- channel estimation --- far-field --- antenna array --- diagnosis procedure --- noisy data --- BCS --- millimeter-wave --- energy efficiency --- pilot contamination --- quantization noise --- massive multi-input multi-output (MIMO) --- distributed antenna systems (DAS) --- sounding reference signal (SRS) --- Massive MIMO --- pilot decontamination --- MSE --- dynamic user scheduling --- dynamic pilot allocation --- beamforming --- line-of-sight --- Ricean fading --- frequency-selective --- power scaling --- hybrid beamforming --- HetNets --- mmWaves --- analog multi-beam --- hybrid beam-forming --- PHY layer --- MAC layer --- pilot assignment --- large-scale fading coefficients --- Bayesian inference --- overcomplete dictionary --- diamond-ring slot --- dual-polarized antenna --- mobile-phone antenna --- pattern diversity --- Metamaterials (MTM) --- leaky-wave antenna (LWA) --- antenna arrays --- substrate integrated waveguide (SIW) --- transverse slots --- beam-scanning --- mutual coupling isolation --- millimetre-wave --- composite right/left-handed transmission line (CRLH-TL) --- 5G wireless networks --- non-coherent detection --- QAM --- multi-user MIMO --- space division multiple access (SDMA) --- block diagonalization (BD) --- non-orthogonal multiple access (NOMA) --- broadcast channel --- discontinuous deception --- multiple beam communications --- artificial intelligence --- wireless communications --- non-orthogonal unicast and multicast transmission --- statistical channel state information --- beam domain --- massive MIMO systems --- MIDE algorithm --- low computational complexity --- BER --- resource allocation
Listing 1 - 6 of 6 |
Sort by
|