Listing 1 - 7 of 7 |
Sort by
|
Choose an application
The development and use of sustainable and alternative fuels (syngas, biogas, biodiesel, bio-oil, hydrogen) derived from sources other than petroleum is needed due to the limited fossil fuel resources, the need for reduction of atmospheric greenhouse gas emissions, energy security, and to meet the future high energy demand due to population growth. New alternative fuels that can be produced locally and derived from renewable sources will be more sustainable compared to fossil fuels. Alternative and renewable fuels can be produced using different thermochemical and bio-chemical processes. Gasification is a thermochemical process used to produce syngas fuel (mainly hydrogen and carbon dioxide) from renewable (biomass) and conventional (coal) sources. The syngas fuels produced from the gasification process can be used for different applications: power generation (combustion of syngas fuel in gas turbine engines), heating, and transportation (internal combustion engines). This book intends to provide the reader with an overview of the current technologies, methods, and strategies of syngas fuel production, characterization, and application.
Fuel switching. --- Alternate fuel --- Alternative fuel --- Fuel interchangeability --- Fuel substitution --- Interchangeability of fuels --- Substitution of fuels --- Switching of fuels --- Substitute products --- Petroleum technology --- Energy transition --- Alternative fuels
Choose an application
Cellular therapy. --- Tissue engineering --- Methodology. --- Tissue engineering. --- Biocompatible Materials. --- Skin, Artificial. --- Guided Tissue Regeneration --- Tissue Engineering --- methods. --- Biomedical engineering --- Regenerative medicine --- Tissue culture --- Cell therapy --- Cells --- Therapy, Cellular --- Organotherapy --- Therapeutics, Physiological --- Transplantation of organs, tissues, etc. --- Cell transplantation --- Artificial Skin --- Skin Substitutes --- Artificial Skins --- Skin Substitute --- Skins, Artificial --- Substitute, Skin --- Substitutes, Skin --- Bioartificial Materials --- Hemocompatible Materials --- Biomaterials --- Bioartificial Material --- Biocompatible Material --- Biomaterial --- Hemocompatible Material --- Material, Bioartificial --- Material, Biocompatible --- Material, Hemocompatible --- Materials Testing --- Biomimetic Materials --- Regenerative Medicine --- Therapeutic use
Choose an application
Bone plates (Orthopedics) --- Osseointegration. --- Osseointegration --- Bone Substitutes. --- Joint Prosthesis. --- physiology. --- Joint Prostheses --- Prostheses, Joint --- Prosthesis, Joint --- Arthroplasty, Replacement --- Bone Replacement Material --- Bone Substitute --- Replacement Material, Bone --- Replacement Materials, Bone --- Substitutes, Bone --- Bone Replacement Materials --- Material, Bone Replacement --- Materials, Bone Replacement --- Substitute, Bone --- Fracture compression plates --- Plates for bones (Orthopedics) --- Internal fixation in fractures --- Orthopedic implants --- Osteointegration --- Guided bone regeneration --- Bone substitutes --- Tissue-integrated prostheses --- Bone substitutes. --- Artificial joints. --- Bone Plates.
Choose an application
This book focus principally on ions-releasing and other smart dental materials for application in preventive and restorative dentistry, as well as in endodontics in the form of adhesives, resin-based composites, pastes, varnishes, liners and dental cements. Special attention has been given to bioactive materials developed to induce cells differentiation/stimulation, hard tissue formation and exert antimicrobial actions. New innovations are necessary to continue to help reinforcing existing technologies and to introduce new paradigms for treating dental disease and restoring teeth seriously compromised by caries lesions via biomimetic and more biological operative approaches. Dental bioactive materials is arguably the latest research area in dentistry and thus the amount of new research is overwhelming. However, in this day and age of evidence based practice it important for this new information to be distilled into a practical and understandable format.
bone substitute --- n/a --- tissue engineering --- dental pulp --- antibacterial --- water sorption --- dentin --- doxycycline --- orthodontic resin --- irradiation --- early colonizer --- Streptococcus mutans --- nanotubes --- nanoparticles --- calcium phosphate nanoparticles --- ?-tricalcium phosphate --- longevity --- bone regeneration --- odontoblastic layer --- zinc --- resin composite --- bioactive --- remineralization --- hydrophilic properties --- stem cells --- color stability --- glass-ionomer cement --- cycling mechanical stress --- triclosan --- nanoporous silica --- ion recharge --- mechanical properties --- mineralization --- resin cements --- bleaching products --- calcium silicate cements --- mesenchymal stem cells --- glass-ionomer cements --- solubility --- silver --- degree of conversion --- dental composites --- diffusion --- calcific barrier --- resin sealant --- resin-modified glass ionomer cements --- desmineralization --- polyacrylic acid treatment --- sorption --- bone substitutes --- inflammation --- animal study --- preclinical biosafety --- shrinkage stress --- calcium sulfate --- photocatalyst TiO2 --- cytotoxicity --- hydroscopic expansion --- calcium --- microtensile bond strength --- antibacterial properties --- adhesion --- photoelastic investigation --- pulpal response --- dental sealant --- universal adhesives --- dentine --- long-term ion release --- cariogenic
Choose an application
Entropy theory has wide applications to a range of problems in the fields of environmental and water engineering, including river hydraulic geometry, fluvial hydraulics, water monitoring network design, river flow forecasting, floods and droughts, river network analysis, infiltration, soil moisture, sediment transport, surface water and groundwater quality modeling, ecosystems modeling, water distribution networks, environmental and water resources management, and parameter estimation. Such applications have used several different entropy formulations, such as Shannon, Tsallis, Reacutenyi Burg, Kolmogorov, Kapur, configurational, and relative entropies, which can be derived in time, space, or frequency domains. More recently, entropy-based concepts have been coupled with other theories, including copula and wavelets, to study various issues associated with environmental and water resources systems. Recent studies indicate the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering, including establishing and explaining physical connections between theory and reality. The objective of this Special Issue is to provide a platform for compiling important recent and current research on the applications of entropy theory in environmental and water engineering. The contributions to this Special Issue have addressed many aspects associated with entropy theory applications and have shown the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering.
hydrological risk analysis --- modeling --- water level --- Poyang Lake basin --- trend --- composite multiscale sample entropy --- flood frequency analysis --- canopy flow --- precipitation --- water resources --- complex systems --- frequency analysis --- optimization --- combined forecast --- neural network forecast --- entropy spectral analysis time series analysis --- environmental engineering --- hydrometric network --- sea surface temperature --- kernel density estimation --- robustness --- turbulent flow --- entropy production --- connection entropy --- flux concentration relation --- turbulence --- tropical rainfall --- generalized gamma (GG) distribution --- multi-events --- El Niño --- joint entropy --- entropy weighting method --- Anhui Province --- changing environment --- complexity --- multiplicative cascades --- Tsallis entropy --- Hexi corridor --- coherent structures --- water resources vulnerability --- uncertainty --- variability --- flow entropy --- Hei River basin --- fuzzy analytic hierarchy process --- substitute --- crop yield --- conditional entropy production --- entropy --- flow duration curve --- mean annual runoff --- temperature --- hydrometeorological extremes --- resilience --- Loess Plateau --- information entropy --- scaling --- water distribution networks --- cross entropy --- randomness --- forewarning model --- entropy applications --- quaternary catchment --- spatio-temporal variability --- probability distribution function --- ant colony fuzzy clustering --- radar --- continuous probability distribution functions --- Shannon entropy --- informational entropy --- information --- confidence intervals --- marginal entropy --- rainfall forecast --- entropy of information --- streamflow --- power laws --- bootstrap aggregating --- maximum entropy-copula method --- spatial and dynamics characteristic --- projection pursuit --- set pair analysis --- entropy theory --- water resource carrying capacity --- entropy parameter --- precipitation frequency analysis --- principle of maximum entropy --- information theory --- stochastic processes --- network design --- complement --- cross elasticity --- climacogram --- methods of moments --- hydrology --- bagging --- principle of maximum entropy (POME) --- rainfall network --- entropy ensemble filter --- ensemble model simulation criterion --- Lagrangian function --- Beta-Lognormal model --- cross-entropy minimization --- ANN --- configurational entropy --- variation of information --- statistical scaling --- EEF method --- water monitoring --- maximum likelihood estimation --- GB2 distribution --- NDVI --- four-parameter exponential gamma distribution --- hydraulics --- spatial optimization --- Kolmogorov complexity --- bootstrap neural networks --- mutual information --- accelerating genetic algorithm --- groundwater depth --- rainfall --- tropical Pacific --- water engineering --- monthly streamflow forecasting --- ENSO --- nonlinear relation --- Bayesian technique --- non-point source pollution --- Burg entropy --- data-scarce --- scaling laws --- soil water content --- arid region --- land suitability evaluation --- information transfer
Choose an application
Entropy theory has wide applications to a range of problems in the fields of environmental and water engineering, including river hydraulic geometry, fluvial hydraulics, water monitoring network design, river flow forecasting, floods and droughts, river network analysis, infiltration, soil moisture, sediment transport, surface water and groundwater quality modeling, ecosystems modeling, water distribution networks, environmental and water resources management, and parameter estimation. Such applications have used several different entropy formulations, such as Shannon, Tsallis, Reacutenyi Burg, Kolmogorov, Kapur, configurational, and relative entropies, which can be derived in time, space, or frequency domains. More recently, entropy-based concepts have been coupled with other theories, including copula and wavelets, to study various issues associated with environmental and water resources systems. Recent studies indicate the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering, including establishing and explaining physical connections between theory and reality. The objective of this Special Issue is to provide a platform for compiling important recent and current research on the applications of entropy theory in environmental and water engineering. The contributions to this Special Issue have addressed many aspects associated with entropy theory applications and have shown the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering.
hydrological risk analysis --- modeling --- water level --- Poyang Lake basin --- trend --- composite multiscale sample entropy --- flood frequency analysis --- canopy flow --- precipitation --- water resources --- complex systems --- frequency analysis --- optimization --- combined forecast --- neural network forecast --- entropy spectral analysis time series analysis --- environmental engineering --- hydrometric network --- sea surface temperature --- kernel density estimation --- robustness --- turbulent flow --- entropy production --- connection entropy --- flux concentration relation --- turbulence --- tropical rainfall --- generalized gamma (GG) distribution --- multi-events --- El Niño --- joint entropy --- entropy weighting method --- Anhui Province --- changing environment --- complexity --- multiplicative cascades --- Tsallis entropy --- Hexi corridor --- coherent structures --- water resources vulnerability --- uncertainty --- variability --- flow entropy --- Hei River basin --- fuzzy analytic hierarchy process --- substitute --- crop yield --- conditional entropy production --- entropy --- flow duration curve --- mean annual runoff --- temperature --- hydrometeorological extremes --- resilience --- Loess Plateau --- information entropy --- scaling --- water distribution networks --- cross entropy --- randomness --- forewarning model --- entropy applications --- quaternary catchment --- spatio-temporal variability --- probability distribution function --- ant colony fuzzy clustering --- radar --- continuous probability distribution functions --- Shannon entropy --- informational entropy --- information --- confidence intervals --- marginal entropy --- rainfall forecast --- entropy of information --- streamflow --- power laws --- bootstrap aggregating --- maximum entropy-copula method --- spatial and dynamics characteristic --- projection pursuit --- set pair analysis --- entropy theory --- water resource carrying capacity --- entropy parameter --- precipitation frequency analysis --- principle of maximum entropy --- information theory --- stochastic processes --- network design --- complement --- cross elasticity --- climacogram --- methods of moments --- hydrology --- bagging --- principle of maximum entropy (POME) --- rainfall network --- entropy ensemble filter --- ensemble model simulation criterion --- Lagrangian function --- Beta-Lognormal model --- cross-entropy minimization --- ANN --- configurational entropy --- variation of information --- statistical scaling --- EEF method --- water monitoring --- maximum likelihood estimation --- GB2 distribution --- NDVI --- four-parameter exponential gamma distribution --- hydraulics --- spatial optimization --- Kolmogorov complexity --- bootstrap neural networks --- mutual information --- accelerating genetic algorithm --- groundwater depth --- rainfall --- tropical Pacific --- water engineering --- monthly streamflow forecasting --- ENSO --- nonlinear relation --- Bayesian technique --- non-point source pollution --- Burg entropy --- data-scarce --- scaling laws --- soil water content --- arid region --- land suitability evaluation --- information transfer
Choose an application
Entropy theory has wide applications to a range of problems in the fields of environmental and water engineering, including river hydraulic geometry, fluvial hydraulics, water monitoring network design, river flow forecasting, floods and droughts, river network analysis, infiltration, soil moisture, sediment transport, surface water and groundwater quality modeling, ecosystems modeling, water distribution networks, environmental and water resources management, and parameter estimation. Such applications have used several different entropy formulations, such as Shannon, Tsallis, Reacutenyi Burg, Kolmogorov, Kapur, configurational, and relative entropies, which can be derived in time, space, or frequency domains. More recently, entropy-based concepts have been coupled with other theories, including copula and wavelets, to study various issues associated with environmental and water resources systems. Recent studies indicate the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering, including establishing and explaining physical connections between theory and reality. The objective of this Special Issue is to provide a platform for compiling important recent and current research on the applications of entropy theory in environmental and water engineering. The contributions to this Special Issue have addressed many aspects associated with entropy theory applications and have shown the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering.
hydrological risk analysis --- modeling --- water level --- Poyang Lake basin --- trend --- composite multiscale sample entropy --- flood frequency analysis --- canopy flow --- precipitation --- water resources --- complex systems --- frequency analysis --- optimization --- combined forecast --- neural network forecast --- entropy spectral analysis time series analysis --- environmental engineering --- hydrometric network --- sea surface temperature --- kernel density estimation --- robustness --- turbulent flow --- entropy production --- connection entropy --- flux concentration relation --- turbulence --- tropical rainfall --- generalized gamma (GG) distribution --- multi-events --- El Niño --- joint entropy --- entropy weighting method --- Anhui Province --- changing environment --- complexity --- multiplicative cascades --- Tsallis entropy --- Hexi corridor --- coherent structures --- water resources vulnerability --- uncertainty --- variability --- flow entropy --- Hei River basin --- fuzzy analytic hierarchy process --- substitute --- crop yield --- conditional entropy production --- entropy --- flow duration curve --- mean annual runoff --- temperature --- hydrometeorological extremes --- resilience --- Loess Plateau --- information entropy --- scaling --- water distribution networks --- cross entropy --- randomness --- forewarning model --- entropy applications --- quaternary catchment --- spatio-temporal variability --- probability distribution function --- ant colony fuzzy clustering --- radar --- continuous probability distribution functions --- Shannon entropy --- informational entropy --- information --- confidence intervals --- marginal entropy --- rainfall forecast --- entropy of information --- streamflow --- power laws --- bootstrap aggregating --- maximum entropy-copula method --- spatial and dynamics characteristic --- projection pursuit --- set pair analysis --- entropy theory --- water resource carrying capacity --- entropy parameter --- precipitation frequency analysis --- principle of maximum entropy --- information theory --- stochastic processes --- network design --- complement --- cross elasticity --- climacogram --- methods of moments --- hydrology --- bagging --- principle of maximum entropy (POME) --- rainfall network --- entropy ensemble filter --- ensemble model simulation criterion --- Lagrangian function --- Beta-Lognormal model --- cross-entropy minimization --- ANN --- configurational entropy --- variation of information --- statistical scaling --- EEF method --- water monitoring --- maximum likelihood estimation --- GB2 distribution --- NDVI --- four-parameter exponential gamma distribution --- hydraulics --- spatial optimization --- Kolmogorov complexity --- bootstrap neural networks --- mutual information --- accelerating genetic algorithm --- groundwater depth --- rainfall --- tropical Pacific --- water engineering --- monthly streamflow forecasting --- ENSO --- nonlinear relation --- Bayesian technique --- non-point source pollution --- Burg entropy --- data-scarce --- scaling laws --- soil water content --- arid region --- land suitability evaluation --- information transfer
Listing 1 - 7 of 7 |
Sort by
|