Listing 1 - 2 of 2 |
Sort by
|
Choose an application
Hydrological extremes have become a major concern because of their devastating consequences and their increased risk as a result of climate change and the growing concentration of people and infrastructure in high-risk zones. The analysis of hydrological extremes is challenging due to their rarity and small sample size, and the interconnections between different types of extremes and becomes further complicated by the untrustworthy representation of meso-scale processes involved in extreme events by coarse spatial and temporal scale models as well as biased or missing observations due to technical difficulties during extreme conditions. The complexity of analyzing hydrological extremes calls for robust statistical methods for the treatment of such events. This Special Issue is motivated by the need to apply and develop innovative stochastic and statistical approaches to analyze hydrological extremes under current and future climate conditions. The papers of this Special Issue focus on six topics associated with hydrological extremes: Historical changes in hydrological extremes; Projected changes in hydrological extremes; Downscaling of hydrological extremes; Early warning and forecasting systems for drought and flood; Interconnections of hydrological extremes; Applicability of satellite data for hydrological studies.
artificial neural network --- downscaling --- innovative methods --- reservoir inflow forecasting --- simulation --- extreme events --- climate variability --- sparse monitoring network --- weighted mean analogue --- sampling errors --- precipitation --- drought indices --- discrete wavelet --- SWSI --- hyetograph --- trends --- climate change --- SIAP --- Kabul river basin --- Hurst exponent --- extreme rainfall --- evolutionary strategy --- the Cauca River --- hydrological drought --- global warming --- least square support vector regression --- polynomial normal transform --- TRMM --- satellite data --- Fiji --- heavy storm --- flood regime --- compound events --- random forest --- uncertainty --- seasonal climate forecast --- INDC pledge --- Pakistan --- wavelet artificial neural network --- HBV model --- temperature --- APCC Multi-Model Ensemble --- meteorological drought --- flow regime --- high resolution --- rainfall --- clausius-clapeyron scaling --- statistical downscaling --- ENSO --- forecasting --- variation analogue --- machine learning --- extreme rainfall analysis --- hydrological extremes --- multivariate modeling --- monsoon --- non-stationary --- support vector machine --- ANN model --- stretched Gaussian distribution --- drought prediction --- non-normality --- statistical analysis --- extreme precipitation exposure --- drought analysis --- extreme value theory --- streamflow --- flood management
Choose an application
This book presents new and original research in Statistical Information Theory, based on minimum divergence estimators and test statistics, from a theoretical and applied point of view, for different statistical problems with special emphasis on efficiency and robustness. Divergence statistics, based on maximum likelihood estimators, as well as Wald’s statistics, likelihood ratio statistics and Rao’s score statistics, share several optimum asymptotic properties, but are highly non-robust in cases of model misspecification under the presence of outlying observations. It is well-known that a small deviation from the underlying assumptions on the model can have drastic effect on the performance of these classical tests. Specifically, this book presents a robust version of the classical Wald statistical test, for testing simple and composite null hypotheses for general parametric models, based on minimum divergence estimators.
n/a --- mixture index of fit --- Kullback-Leibler distance --- relative error estimation --- minimum divergence inference --- Neyman Pearson test --- influence function --- consistency --- thematic quality assessment --- asymptotic normality --- Hellinger distance --- nonparametric test --- Berstein von Mises theorem --- maximum composite likelihood estimator --- 2-alternating capacities --- efficiency --- corrupted data --- statistical distance --- robustness --- log-linear models --- representation formula --- goodness-of-fit --- general linear model --- Wald-type test statistics --- Hölder divergence --- divergence --- logarithmic super divergence --- information geometry --- sparse --- robust estimation --- relative entropy --- minimum disparity methods --- MM algorithm --- local-polynomial regression --- association models --- total variation --- Bayesian nonparametric --- ordinal classification variables --- Wald test statistic --- Wald-type test --- composite hypotheses --- compressed data --- hypothesis testing --- Bayesian semi-parametric --- single index model --- indoor localization --- composite minimum density power divergence estimator --- quasi-likelihood --- Chernoff Stein lemma --- composite likelihood --- asymptotic property --- Bregman divergence --- robust testing --- misspecified hypothesis and alternative --- least-favorable hypotheses --- location-scale family --- correlation models --- minimum penalized ?-divergence estimator --- non-quadratic distance --- robust --- semiparametric model --- divergence based testing --- measurement errors --- bootstrap distribution estimator --- generalized renyi entropy --- minimum divergence methods --- generalized linear model --- ?-divergence --- Bregman information --- iterated limits --- centroid --- model assessment --- divergence measure --- model check --- two-sample test --- Wald statistic --- Hölder divergence
Listing 1 - 2 of 2 |
Sort by
|