Narrow your search

Library

FARO (9)

KU Leuven (9)

LUCA School of Arts (9)

Odisee (9)

Thomas More Kempen (9)

Thomas More Mechelen (9)

UCLL (9)

ULB (9)

ULiège (9)

VIVES (9)

More...

Resource type

book (13)


Language

English (13)


Year
From To Submit

2019 (13)

Listing 1 - 10 of 13 << page
of 2
>>
Sort by

Book
Pd-based Membranes. Overview and Perspectives
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Palladium (Pd)-based membranes have received a great deal of attention from both academia and industry thanks to their ability to selectively separate hydrogen from gas streams. The integration of such membranes with appropriate catalysts in membrane reactors allows for hydrogen production with CO2 capture that can be applied in smaller bioenergy or combined heat and power (CHP) plants, as well as in large-scale power plants. Pd-based membranes are therefore regarded as a Key Enabling Technology (KET) to facilitate the transition towards a knowledge-based, low-carbon, and resource-efficient economy. This Special Issue of the journal Membranes on “Pd-based Membranes: Overview and Perspectives” contains nine peer-reviewed articles. Topics include manufacturing techniques, understanding of material phenomena, module and reactor design, novel applications, and demonstration efforts and industrial exploitation.

Keywords

hydrides --- membrane --- Pd-Ag membranes --- electroless plating --- defect distribution --- hydrogen --- hydrogen production --- suspension plasma spraying --- chemical potential --- review --- grain boundary --- manufacturing --- palladium --- LOHC --- palladium alloy --- open architecture --- PdAg-membrane --- hydrogen permeation --- modelling --- membranes --- pore mouth size distribution --- MLLDP --- solubility --- closed architecture --- demonstration --- Pd-based membrane --- methanol steam reforming --- activity --- micro reactor --- microstructured --- hydrogen separation --- membrane reactors --- Pd alloy --- hydrogen purification --- palladium-based membrane --- gas to liquid --- dense Pd membrane --- propylene --- heat treatment --- surface characterization --- porous membrane --- multi-stage --- membrane reactor --- dehydrogenation --- hydrides --- membrane --- Pd-Ag membranes --- electroless plating --- defect distribution --- hydrogen --- hydrogen production --- suspension plasma spraying --- chemical potential --- review --- grain boundary --- manufacturing --- palladium --- LOHC --- palladium alloy --- open architecture --- PdAg-membrane --- hydrogen permeation --- modelling --- membranes --- pore mouth size distribution --- MLLDP --- solubility --- closed architecture --- demonstration --- Pd-based membrane --- methanol steam reforming --- activity --- micro reactor --- microstructured --- hydrogen separation --- membrane reactors --- Pd alloy --- hydrogen purification --- palladium-based membrane --- gas to liquid --- dense Pd membrane --- propylene --- heat treatment --- surface characterization --- porous membrane --- multi-stage --- membrane reactor --- dehydrogenation


Book
Pd-based Membranes. Overview and Perspectives
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Palladium (Pd)-based membranes have received a great deal of attention from both academia and industry thanks to their ability to selectively separate hydrogen from gas streams. The integration of such membranes with appropriate catalysts in membrane reactors allows for hydrogen production with CO2 capture that can be applied in smaller bioenergy or combined heat and power (CHP) plants, as well as in large-scale power plants. Pd-based membranes are therefore regarded as a Key Enabling Technology (KET) to facilitate the transition towards a knowledge-based, low-carbon, and resource-efficient economy. This Special Issue of the journal Membranes on “Pd-based Membranes: Overview and Perspectives” contains nine peer-reviewed articles. Topics include manufacturing techniques, understanding of material phenomena, module and reactor design, novel applications, and demonstration efforts and industrial exploitation.


Book
Pd-based Membranes. Overview and Perspectives
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Palladium (Pd)-based membranes have received a great deal of attention from both academia and industry thanks to their ability to selectively separate hydrogen from gas streams. The integration of such membranes with appropriate catalysts in membrane reactors allows for hydrogen production with CO2 capture that can be applied in smaller bioenergy or combined heat and power (CHP) plants, as well as in large-scale power plants. Pd-based membranes are therefore regarded as a Key Enabling Technology (KET) to facilitate the transition towards a knowledge-based, low-carbon, and resource-efficient economy. This Special Issue of the journal Membranes on “Pd-based Membranes: Overview and Perspectives” contains nine peer-reviewed articles. Topics include manufacturing techniques, understanding of material phenomena, module and reactor design, novel applications, and demonstration efforts and industrial exploitation.


Book
Membrane and Membrane Reactors Operations in Chemical Engineering
Author:
ISBN: 3039210238 303921022X Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue is aimed at highlighting the potentialities of membrane and membrane reactor operations in various sectors of chemical engineering, based on application of the process intensification strategy. In all of the contributions, the principles of process intensification were pursued during the adoption of membrane technology, demonstrating how it may lead to the development of redesigned processes that are more compact and efficient while also being more environmental friendly, energy saving, and amenable to integration with other green processes. This Special Issue comprises a number of experimental and theoretical studies dealing with the application of membrane and membrane reactor technology in various scientific fields of chemical engineering, such as membrane distillation for wastewater treatment, hydrogen production from reforming reactions via inorganic membrane and membrane photoassisted reactors, membrane desalination, gas/liquid phase membrane separation of CO2, and membrane filtration for the recovery of antioxidants from agricultural byproducts, contributing to valorization of the potentialities of membrane operations.


Book
Green Synthesis of Nanomaterials
Author:
ISBN: 3039217879 3039217860 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nanomaterials possess astonishing physical and chemical properties. They play a key role in the development of novel and effective drugs, catalysts, sensors, and pesticides, to cite just a few examples. Notably, the synthesis of nanomaterials is usually achieved with chemical and physical methods needing the use of extremely toxic chemicals or high-energy inputs. To move towards more eco-friendly processes, researchers have recently focused on so-called “green synthesis”, where microbial, animal-, and plant-borne compounds can be used as cheap reducing and stabilizing agents to fabricate nanomaterials. Green synthesis routes are cheap, environmentally sustainable, and can lead to the fabrication of nano-objects with controlled sizes and shapes—two key features determining their bioactivity.


Book
New Results and Advances in PGE Mineralogy in Ni-Cu-Cr-PGE Ore Systems
Authors: ---
ISBN: 3039217178 303921716X Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book (Special Issue) presents impressive new results related to a wide spectrum of occurrences of platinum-group minerals (PGM) and natural compounds enriched in platinum-group elements (PGE), which are associated with various complexes and deposits, such as Uralian-Alaskan-type complexes, layered intrusions and placers. The geographical locations of the involved deposits and complexes include, on a truly international scale, different areas of the Urals, Western and Eastern Sayans and Gornaya Shoria in Siberia, Southern Central Asian Orogenic Belt in China, Northern Michigan, USA, South Africa and Zimbabwe, etc. Of particular interest is the first description of a new species of PGM, thalhammerite (approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association), which is a new species of palladium-silver sulfobismuthide discovered in the Noril’sk region of Russia. Additionally, comprehensive reviews, on compositional variations in Pt–Fe alloy minerals and processes of transformations of PGM in exogenic environments, are presented which will also attract attention from international readers.


Book
Catalysts Deactivation, Poisoning and Regeneration
Authors: ---
ISBN: 3039215477 3039215469 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Catalyst lifetime represents one of the most crucial economic aspects in industrial catalytic processes, due to costly shutdowns, catalyst replacements, and proper disposal of spent materials. Not surprisingly, there is considerable motivation to understand and treat catalyst deactivation, poisoning, and regeneration, which causes this research topic to continue to grow. The complexity of catalyst poisoning obviously increases along with the increasing use of biomass/waste-derived/residual feedstocks and with requirements for cleaner and novel sustainable processes. This book collects 15 research papers providing insights into several scientific and technical aspects of catalyst poisoning and deactivation, proposing more tolerant catalyst formulations, and exploring possible regeneration strategies.


Book
Coordination Chemistry of Silicon
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The chemistry of silicon has always been a field of major concern due to its proximity to carbon on the periodic table. From the molecular chemist's viewpoint, one of the most interesting differences between carbon and silicon is their divergent coordination behavior. In fact, silicon is prone to form hyper-coordinate organosilicon complexes, and, as conveyed by reports in the literature, highly sophisticated ligand systems are required to furnish low-coordinate organosilicon complexes. Tremendous progress in experimental, as well as computational, techniques has granted synthetic access to a broad range of coordination numbers for silicon, and the scientific endeavor, which was ongoing for decades, was rewarded with landmark discoveries in the field of organosilicon chemistry. Molecular congeners of silicon(0), as well as silicon oxides, were unveiled, and the prominent group 14 metalloid proved its applicability in homogenous catalysis as a supportive ligand or even as a center of catalytic activity. This book focuses on the most recent advances in the coordination chemistry of silicon with transition metals as well as main group elements, including the stabilization of low-valent silicon species through the coordination of electron donor ligands. Therefore, this book is associated with the development of novel synthetic methodologies, structural elucidations, bonding analysis, and also possible applications in catalysis or chemical transformations using related organosilicon compounds.

Keywords

cluster --- molecular orbital analysis --- bond activation --- X-ray diffraction --- silsesquioxanes --- digermacyclobutadiene --- intermetallic bond --- germanium --- computational chemistry --- ?-electron systems --- isocyanide --- X-ray crystallography --- cyclic organopolysilane --- disilene --- ruthenium --- platinum --- DFT --- Photostability --- silicon surfaces --- stereochemistry --- palladium --- distorted coordination --- 29Si NMR spectroscopy --- organosilicon --- disilanylene polymer --- Si–Cl activation --- adsorption --- AIM --- siliconoid --- nanoparticle --- disiloxane tetrols --- germylene --- hydrogen bonding --- TiO2 --- dehydrogenative alkoxylation --- siloxanes --- 2-silylpyrrolidines --- bonding analysis --- ?-chloro-?-hydrooligosilane --- hydrido complex --- oxidative addition --- photoreaction --- template --- surface modification --- titanium --- bromosilylenes --- host-guest chemistry --- hydrogen bonds --- salt-free --- N-heterocyclic carbines --- silicon cluster --- condensation --- silyliumylidenes --- Baird’s rule --- N-heterocyclic carbenes --- reductant --- main group coordination chemistry --- molecular cage --- subvalent compounds --- isomerization --- silanetriols --- germathioacid chloride --- dehydrobromination --- N-heterocyclic carbene --- mechanistic insights --- ligand-exchange reaction --- bridging silylene ligand --- dye-sensitized solar cell --- silylene --- computation --- functionalization --- silicon --- digermene --- N-Heterocyclic tetrylene --- density functional theory --- primary silane --- small molecule activation --- excited state aromaticity --- germanethione --- supramolecular chemistry


Book
Coordination Chemistry of Silicon
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The chemistry of silicon has always been a field of major concern due to its proximity to carbon on the periodic table. From the molecular chemist's viewpoint, one of the most interesting differences between carbon and silicon is their divergent coordination behavior. In fact, silicon is prone to form hyper-coordinate organosilicon complexes, and, as conveyed by reports in the literature, highly sophisticated ligand systems are required to furnish low-coordinate organosilicon complexes. Tremendous progress in experimental, as well as computational, techniques has granted synthetic access to a broad range of coordination numbers for silicon, and the scientific endeavor, which was ongoing for decades, was rewarded with landmark discoveries in the field of organosilicon chemistry. Molecular congeners of silicon(0), as well as silicon oxides, were unveiled, and the prominent group 14 metalloid proved its applicability in homogenous catalysis as a supportive ligand or even as a center of catalytic activity. This book focuses on the most recent advances in the coordination chemistry of silicon with transition metals as well as main group elements, including the stabilization of low-valent silicon species through the coordination of electron donor ligands. Therefore, this book is associated with the development of novel synthetic methodologies, structural elucidations, bonding analysis, and also possible applications in catalysis or chemical transformations using related organosilicon compounds.

Keywords

cluster --- molecular orbital analysis --- bond activation --- X-ray diffraction --- silsesquioxanes --- digermacyclobutadiene --- intermetallic bond --- germanium --- computational chemistry --- ?-electron systems --- isocyanide --- X-ray crystallography --- cyclic organopolysilane --- disilene --- ruthenium --- platinum --- DFT --- Photostability --- silicon surfaces --- stereochemistry --- palladium --- distorted coordination --- 29Si NMR spectroscopy --- organosilicon --- disilanylene polymer --- Si–Cl activation --- adsorption --- AIM --- siliconoid --- nanoparticle --- disiloxane tetrols --- germylene --- hydrogen bonding --- TiO2 --- dehydrogenative alkoxylation --- siloxanes --- 2-silylpyrrolidines --- bonding analysis --- ?-chloro-?-hydrooligosilane --- hydrido complex --- oxidative addition --- photoreaction --- template --- surface modification --- titanium --- bromosilylenes --- host-guest chemistry --- hydrogen bonds --- salt-free --- N-heterocyclic carbines --- silicon cluster --- condensation --- silyliumylidenes --- Baird’s rule --- N-heterocyclic carbenes --- reductant --- main group coordination chemistry --- molecular cage --- subvalent compounds --- isomerization --- silanetriols --- germathioacid chloride --- dehydrobromination --- N-heterocyclic carbene --- mechanistic insights --- ligand-exchange reaction --- bridging silylene ligand --- dye-sensitized solar cell --- silylene --- computation --- functionalization --- silicon --- digermene --- N-Heterocyclic tetrylene --- density functional theory --- primary silane --- small molecule activation --- excited state aromaticity --- germanethione --- supramolecular chemistry


Book
Amide Bond Activation
Author:
ISBN: 3039212044 3039212036 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The amide bond represents a privileged motif in chemistry. The recent years have witnessed an explosion of interest in the development of new chemical transformations of amides. These developments cover an impressive range of catalytic N–C bond activation in electrophilic, Lewis acid, radical, and nucleophilic reaction pathways, among other transformations. Equally relevant are structural and theoretical studies that provide the basis for chemoselective manipulation of amidic resonance. This monograph on amide bonds offers a broad survey of recent advances in activation of amides and addresses various approaches in the field.

Keywords

N-heterocyclic carbene --- non planar amide --- ruthenium (Ru) --- physical organic chemistry --- gemcitabine prodrug --- pyramidal amides --- bridged sultams --- catalysis --- dipeptides --- N-(1-naphthyl)acetamide --- C-N ? bond cleavage --- steric effects --- peptide bond cleavage --- transition-metal-free --- palladium --- N-heterocyclic carbenes (NHCs) --- addition reaction --- C–O activation --- rhodium --- metal complexes --- carbanions --- thioamidation --- amide bond --- intramolecular catalysis --- antiviral activity --- additivity principle --- pre-catalysts --- C–N bond cleavage --- bridged lactams --- C–H acidity --- arynes --- twisted amides --- organic synthesis --- amination --- Suzuki-Miyaura --- tert-butyl --- cyclopentadienyl complexes --- C-S formation --- enzymes --- DFT study --- sulfonamide bond --- N --- HERON reaction --- primaquine --- entropy --- amide activation --- amidation --- synthesis --- amide hydrolysis --- carbonylicity --- amide bond activation --- amide bond resonance --- aminosulfonylation --- molecular dynamics --- model compound --- in situ --- amide --- homogeneous catalysis --- heterocycles --- anomeric effect --- multi-component coupling reaction --- kinetic --- excited state --- C–H bond cleavage --- palladium catalysis --- amides --- thiourea --- formylation --- alkynes --- cis/trans isomerization --- amide C–N bond activation --- intein --- C-H functionalization --- succindiamide --- amide bonds --- crown ether --- aminoacylation --- directing groups --- cytostatic activity --- reaction thermodynamics --- acyl transfer --- transition metals --- N-dimethylformamide --- DMAc --- acylative cross-coupling --- C-H/C-N activation --- nickel catalysis --- antibacterial screening --- sodium --- aryl thioamides --- Winkler-Dunitz parameters --- catalyst --- N-dimethylacetamide --- base-catalyed hydrolysis --- nitrogen heterocycles --- cross-coupling --- insertion --- amidicity --- nitro-aci tautomerism --- activation --- carbonylation --- transamidation --- amine --- distortion --- Pd-catalysis --- rotational barrier energy --- hypersensitivity --- N–C activation --- metabolic stability --- [2+2+2] annulation --- twisted amide --- protease --- cyanation --- amide resonance --- trialkylborane --- catalysts --- biofilm eradication --- pharmacokinetics --- pancreatic cancer cells --- DMF --- aryl esters --- Michael acceptor --- fumardiamide --- water solvation --- ester bond activation --- cyclization --- nuclear magnetic resonance --- secondary amides --- reaction mechanism --- density functional theory --- density-functional theory --- amino acid transporters

Listing 1 - 10 of 13 << page
of 2
>>
Sort by