Listing 1 - 10 of 15 | << page >> |
Sort by
|
Choose an application
Choose an application
Drawing together topics from a wide range of disciplines, this text provides a comprehensive insight into the fundamentals of magnetic biosensors and the applications of magnetic nanoparticles in medicine. Internationally renowned researchers showcase topics ranging from the basic physical principles of magnetism to the detection and manipulation, synthesis protocols and natural occurrence of magnetic nanoparticles. Up-to-date examples of their clinical usage and research applications in the biomedical fields of sensing by diverse magnetic detection methods, in imaging by MRI and in therapeutic strategies such as hyperthermia, are also discussed, providing a thorough introduction to this rapidly developing field. Each chapter features questions with answers, highlighted definition boxes, and numerous illustrations which help readers grasp key concepts. Mathematical tools, together with key literature references, provide a strong underpinning for the material, making it ideal for graduate students, lecturers, medical researchers and industrial scientific strategists.
Nanostructured materials --- Biomedical materials. --- Nanomedicine. --- Magnetic properties. --- Therapeutic use.
Choose an application
Choose an application
Choose an application
This volume describes how controlled-source electromagnetic (CSEM) methods are used to determine the electrical conductivity and hydrocarbon content of the upper few kilometres of the Earth, on land and at sea. The authors show how the signal-to-noise ratio of the measured data may be maximised via suitable choice of acquisition and processing parameters and selection of subsequent data analysis procedures. Complete impulse responses for every electric and magnetic source and receiver configuration are derived, providing a guide to the expected response for real data. 1-D, 2-D and 3-D modelling and inversion procedures for recovery of Earth conductivity are presented, emphasising the importance of updating model parameters using complementary geophysical data and rock physics relations. Requiring no specialist prior knowledge of electromagnetic theory, and providing a step-by-step guide through the necessary mathematics, this book provides an accessible introduction for advanced students, researchers and industry practitioners in exploration geoscience and petroleum engineering.
Electromagnetic fields. --- Electric prospecting. --- Earth (Planet) --- Electric properties. --- Magnetic properties. --- Crust.
Choose an application
In this book, cancer theranostics applications of magnetic iron oxide nanoparticles are overviewed in detail. Moreover, their synthesis, characterization, multifunctionality, disease targeting, biodistribution, pharmacokinetics and toxicity have been briefly highlighted. Finally, we have mentioned the current examples of clinical trials of magnetic nanoparticles in cancer theranostics, along with their future scopes and challenges. Part of IOP Series in Photomedicine and Biophotonics
Cancer --- Nanostructured materials --- Biomedical engineering. --- Neoplasms --- Magnetite Nanoparticles --- Nanostructures --- Biosensing Techniques. --- Nursing specialties. --- MEDICAL / Nursing / Oncology & Cancer. --- Diagnosis. --- Treatment. --- Magnetic properties. --- Therapeutic use. --- therapy. --- diagnosis. --- therapeutic use.
Choose an application
The Special Edition 'Compounds with Polar Metallic Bonding' is a collection of eight original research reports presenting a broad variety of chemical systems, analytical methods, preparative pathways and theoretical descriptions of bonding situations, with the common aim of understanding the complex interplay of conduction electrons in intermetallic compounds that possess different types of dipoles. Coulombic dipoles introduced by electronegativity differences, electric or magnetic dipoles, polarity induced by symmetry reduction—all the possible facets of the term 'polarity'—can be observed in polar intermetallic phases and have their own and, in most cases, unique consequences on the physical and chemical behaviour. Elucidation of the structure–property relationships in compounds with polar metallic bonding is a modern and growing scientific field which combines solid state physics, preparative chemistry, metallurgy, modern analytic methods, crystallography, theoretical calculations of the electronic state and many more disciplines.
bonding analyses --- coloring problem --- n/a --- X-ray diffraction --- magnetism --- band structure --- group-subgroup --- alkaline-earth --- Zintl --- nitridometalate --- structure optimizations --- electronic structure --- polar intermetallics --- polar intermetallic --- intermetallic compounds --- XPS --- Zintl compounds --- stannides --- total energy --- COHP method --- symmetry reduction --- chemical bond --- plumbides --- ternary Laves phases --- powder diffraction --- intermetallics --- magnetic properties --- Ca14AlSb11 --- thermoelectric --- crystal structure --- liquid ammonia
Choose an application
The term “first-principles calculations” is a synonym for the numerical determination of the electronic structure of atoms, molecules, clusters, or materials from ‘first principles’, i.e., without any approximations to the underlying quantum-mechanical equations. Although numerous approximate approaches have been developed for small molecular systems since the late 1920s, it was not until the advent of the density functional theory (DFT) in the 1960s that accurate “first-principles” calculations could be conducted for crystalline materials. The rapid development of this method over the past two decades allowed it to evolve from an explanatory to a truly predictive tool. Yet, challenges remain: complex chemical compositions, variable external conditions (such as pressure), defects, or properties that rely on collective excitations—all represent computational and/or methodological bottlenecks. This Special Issue comprises a collection of papers that use DFT to tackle some of these challenges and thus highlight what can (and cannot yet) be achieved using first-principles calculations of crystals.
ab initio --- n/a --- magnetic Lennard–Jones --- superconductivity --- global optimisation --- electrical engineering --- first-principles --- semiconductors --- refractory metals --- genetic algorithm --- DFT --- crystal structure prediction --- electronic structure --- indium arsenide --- van der Waals corrections --- charged defects --- Ir-based intermetallics --- point defects --- electronic properties --- learning algorithms --- half-Heusler alloy --- molecular crystals --- chlorine --- optical properties --- ab initio calculations --- magnetic properties --- structure prediction --- thermoelectricity --- high-pressure --- density functional theory --- magnetic materials --- structural fingerprint --- crystal structure --- semihard materials --- silver --- formation energy --- Heusler alloy --- battery materials --- elastic properties --- magnetic Lennard-Jones
Choose an application
As we all know, electrons carry both charge and spin. The processing of information in conventional electronic devices is based only on the charge of electrons. Spin electronics, or spintronics, uses the spin of electrons, as well as their charge, to process information. Metals, semiconductors, and insulators are the basic materials that constitute the components of electronic devices, and these types of materials have been transforming all aspects of society for over a century. In contrast, magnetic metals, half-metals (including zero-gap half-metals), magnetic semiconductors (including spin-gapless semiconductors), dilute magnetic semiconductors, and magnetic insulators are the materials that will form the basis for spintronic devices. This book aims to collect a range of papers on novel materials that have intriguing physical properties and numerous potential practical applications in spintronics.
n/a --- doping --- spin polarization --- first-principle --- quaternary Heusler alloy --- electronic structure --- Prussian blue analogue --- first-principles calculations --- first-principles calculation --- magnetic anisotropy --- pressure --- Nb (100) surface --- Dzyaloshinskii–Moriya interaction --- optical properties --- skyrmion --- equiatomic quaternary Heusler compounds --- Heusler alloy --- interface structure --- first principles --- magnetism --- spin transport --- first-principles method --- monolayer CrSi2 --- half-metallic material --- H adsorption --- half-metallic materials --- lattice dynamics --- spin gapless semiconductor --- first-principle calculations --- half-metallicity --- bulk CrSi2 --- covalent hybridization --- H diffusion --- electronic property --- MgBi2O6 --- physical nature --- Mo doping --- phase stability --- mechanical anisotropy --- quaternary Heusler compound --- magnetic properties --- exchange energy --- Dzyaloshinskii-Moriya interaction
Choose an application
Molecular magnets show many properties not met in conventional metallic magnetic materials, i.e. low density, transparency to electromagnetic radiation, sensitivity to external stimuli such as light, pressure, temperature, chemical modification or magnetic/electric fields, and others. They can serve as “functional” materials in sensors of different types or be applied in high-density magnetic storage or nanoscale devices. Research into molecule-based materials became more intense at the end of the 20th century and is now an important branch of modern science. The articles in this Special Issue, written by physicists and chemists, reflect the current work on molecular magnets being carried out in several research centers. Theoretical papers in the issue concern the influence of spin anisotropy in the low dimensional lattice of the resulting type of magnet, as well as thermodynamics and magnetic excitations in spin trimers. The impact of external pressure on structural and magnetic properties and its underlying mechanisms is described using the example of Prussian blue analogue data. The other functionality discussed is the magnetocaloric effect, investigated in coordination polymers and high spin clusters. In this issue, new molecular magnets are presented: (i) ferromagnetic high-spin [Mn6] single-molecule magnets, (ii) solvatomagnetic compounds changing their structure and magnetism dependent on water content, and (iii) a family of purely organic magnetic materials. Finally, an advanced calorimetric study of anisotropy in magnetic molecular superconductors is reviewed.
molecular magnetism --- phase diagram --- superconductivity --- molecular magnets --- magnetism --- thermodynamics --- ?-d system --- cyclam --- critical behaviour --- redox --- exact diagonalization --- salicylamidoxime --- thermodynamic measurement --- magnetic conductor --- quantum magnet --- radical anion --- single crystal heat capacity measurement --- effect of high pressure --- square lattice --- single-molecule magnets --- cyano bridge --- Berezinskii-Kosterlitz-Thouless phase transition --- coordination polymers --- Prussian blue analogues --- chain --- antiferromagnetism --- dioxothiadiazole --- inelastic neutron scattering --- spin anisotropy --- rectangular lattice --- superexchange interaction --- Heisenberg exchange Hamiltonian --- Heisenberg --- S = 1/2 XXZ model --- antiferromagnetic coupling --- manganese(III) --- spin clusters --- magnetic properties --- magnetocaloric effect --- crystal structure --- copper(II) --- octacyanotungstate(V) --- octacyanometallates
Listing 1 - 10 of 15 | << page >> |
Sort by
|