Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

UGent (2)

ULB (2)

ULiège (2)

More...

Resource type

book (2)


Language

English (2)


Year
From To Submit

2019 (2)

Listing 1 - 2 of 2
Sort by

Book
TRP Channels in Health and Disease
Author:
ISBN: 3039210831 3039210823 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Almost 25 years ago, the first mammalian transient receptor potential (TRP) channel was cloned and published. TRP channels now represent an extended family of 28 members fulfilling multiple roles in the living organism. Identified functions include control of body temperature, transmitter release, mineral homeostasis, chemical sensing, and survival mechanisms in a challenging environment. The TRP channel superfamily covers six families: TRPC with C for “canonical”, TRPA with A for “ankyrin”, TRPM with M for “melastatin”, TRPML with ML for “mucolipidin”, TRPP with P for “polycystin”, and TRPV with V for “vanilloid”. Over the last few years, new findings on TRP channels have confirmed their exceptional function as cellular sensors and effectors. This Special Book features a collection of 8 reviews and 7 original articles published in “Cells” summarizing the current state-of-the-art on TRP channel research, with a main focus on TRP channel activation, their physiological and pathophysiological function, and their roles as pharmacological targets for future therapeutic options.

Keywords

n/a --- transient receptor potential channels --- photochromic ligands --- elementary immunology --- Purkinje cell --- EPSC --- substance P --- chemicals --- organ toxicity --- lymphocytes --- HSP70 --- physiology --- bioavailable --- inflammatory bowel disease --- platelets --- pollutants --- yeast --- regulatory T cells --- kinase --- Saccharomyces cerevisiae --- manganese --- cerebellum --- TRP channel --- NHERF --- inflammation --- nanoHPLC-ESI MS/MS --- TRPM7 --- chemical probes --- TRPM8 --- dorsal column nuclei --- TRPV2 --- TRPV3 --- calcitonin gene-related peptide --- TRPV1 --- ion channels --- transient receptor potential --- 2D gel electrophoresis --- MALDI-TOF MS(/MS) --- TRPV4 --- overproduction --- sulfur mustard --- oxidative stress --- graft versus host disease --- menthol --- topical --- chemosensor --- AP18 --- calcium signalling --- mucosal epithelium --- cuneate nucleus --- production platform --- TRPC channels --- ulcerative colitis --- channel structure --- xerostomia --- neutrophils --- cardiovascular system --- TRPC5 --- TRPC6 --- TRPC3 --- TRPC4 --- calcium signaling --- protein purification --- adipose tissue --- transient receptor potential (TRP) channels --- sodium --- TH17 --- diacylglycerol --- hypersensitivity --- TRPY1 --- GABAB --- HEK293 --- thrombosis --- ion channel --- TRPC --- pathophysiology --- SMAD --- toxicology --- endothelium --- calcium --- proteomics --- TRPA1 --- salivary glands --- TRP channels --- lipid mediators --- sensors --- radiation --- TRPM4 channel --- human medulla oblongata --- mGluR1 --- small molecules --- TRPC3 pharmacology


Book
Polyamine Metabolism in Disease and Polyamine-Targeted Therapies
Author:
ISBN: 3039211536 3039211528 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Polyamines are ubiquitous polycations essential for all cellular life. The most common polyamines in eukaryotes, spermine, spermidine, and putrescine, exist in millimolar intracellular concentrations that are tightly regulated through biosynthesis, catabolism, and transport. Polyamines interact with, and regulate, negatively charged macromolecules, including nucleic acids, proteins, and ion channels. Accordingly, alterations in polyamine metabolism affect cellular proliferation and survival through changes in gene expression and transcription, translation, autophagy, oxidative stress, and apoptosis. Dysregulation of these multifaceted polyamine functions contribute to multiple disease processes, thus their metabolism and function have been targeted for preventive or therapeutic intervention. The correlation between elevated polyamine levels and cancer is well established, and ornithine decarboxylase, the rate-limiting biosynthetic enzyme in the production of putrescine, is a bona fide transcriptional target of the Myc oncogene. Furthermore, induced polyamine catabolism contributes to carcinogenesis that is associated with certain forms of chronic infection and/or inflammation through the production of reactive oxygen species. These and other characteristics specific to cancer cells have led to the development of polyamine-based agents and inhibitors aimed at exploiting the polyamine metabolic pathway for chemotherapeutic and chemopreventive benefit. In addition to cancer, polyamines are involved in the pathologies of neurodegenerative diseases including Alzheimer’s and Parkinson’s, parasitic and infectious diseases, wound healing, ischemia/reperfusion injuries, and certain age-related conditions, as polyamines are known to decrease with age. As in cancer, polyamine-based therapies for these conditions are an area of active investigation. With recent advances in immunotherapy, interest has increased regarding polyamine-associated modulation of immune responses, as well as potential immunoregulation of polyamine metabolism, the results of which could have relevance to multiple disease processes. The goal of this Special Issue of Medical Sciences is to present the most recent advances in polyamine research as it relates to health, disease, and/or therapy.

Keywords

protein synthesis in cancer --- neuroblastoma --- epigenetics --- Drosophila imaginal discs --- pneumococcal pneumonia --- transgenic mice --- spermidine/spermine N1-acetyl transferase --- ?-difluoromethylornithine --- MYC --- skeletal muscle --- protein expression --- curcumin --- colorectal cancer --- autophagy --- human embryonic kidney 293 (HEK293) --- melanoma --- tumor immunity --- Snyder-Robinson Syndrome --- Streptococcus pneumoniae --- B-lymphocytes --- autoimmunity --- spermine oxidase --- cell differentiation --- diferuloylmethane --- immunity --- antizyme --- transgenic mouse --- polyamine --- hirsutism --- chemoprevention --- CRISPR --- transglutaminase --- polyamine analogs --- NF-?B --- spermine synthase --- atrophy --- aging --- oxidative stress --- mast cells --- African sleeping sickness --- pancreatic ductal adenocarcinoma --- eflornithine --- carcinogenesis --- ornithine decarboxylase --- polyamine transport inhibitor --- putrescine --- neutrophils --- spermidine --- untranslated region --- spermine --- polyphenol --- M2 macrophages --- polyamine transport system --- metabolism --- difluoromethylorthinine --- DFMO --- antizyme inhibitors --- capsule --- polyamine transport --- eosinophils --- MCF-7 cells --- difluoromethylornithine --- polyamine metabolism --- mutant BRAF --- polyamines --- cadaverine --- proteomics --- airway smooth muscle cells --- breast cancer --- X-linked intellectual disability --- complementation --- T-lymphocytes --- bis(ethyl)polyamine analogs --- antizyme 1 --- cancer --- osteosarcoma

Listing 1 - 2 of 2
Sort by