Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Power production and its consumption and distribution are among the most urgent problems of mankind. Despite positive dynamics in introducing renewable sources of energy, nuclear power plants still remain the major source of carbon-free electric energy. Fusion can be an alternative to fission in the foreseeable future. Research in the field of controlled nuclear fusion has been ongoing for almost 100 years. Magnetic confinement systems are the most promising for effective implementation, and the International Thermonuclear Experimental Reactor is under construction in France. To accomplish nuclear fusion on Earth, we have to resolve a number of scientific and technological problems. This monograph includes selected chapters on nuclear physics and mechanical engineering within the scope of nuclear fusion.
Nuclear fusion. --- Fusion, Nuclear --- Fusion reactions --- Fusion --- Nuclear reactions --- Physical Sciences --- Engineering and Technology --- Chemistry --- Radiochemistry --- Nuclear Chemistry
Choose an application
This book is based on Valery Zagrebaev's original papers and lecture materials on nuclear physics with heavy ions, which he prepared and extended through many years for the students of nuclear physics specialties. Thе book outlines the main experimental facts on nuclear reactions involving heavy ions at low energies. It focuses on discussions of nuclear physics processes that are a subject of active, modern research and it gives illustrative explanations of these phenomena in the framework of up-to-date theoretical concepts. This textbook is intended for students in physics who have completed a standard course of quantum mechanics and have basic ideas of nuclear physics processes. It is designed as a kind of lifeboat that, at the end of the course, will allow students to navigate the modern scientific literature and to understand the goals and objectives of current, on-going research.
Nuclear physics. --- Heavy ions. --- Nuclear fusion. --- Nuclear Physics, Heavy Ions, Hadrons. --- Nuclear Fusion. --- Fusion, Nuclear --- Fusion reactions --- Fusion --- Nuclear reactions --- Ions --- Atomic nuclei --- Atoms, Nuclei of --- Nucleus of the atom --- Physics
Choose an application
This primer begins with a brief introduction to the main ideas underlying Effective Field Theory (EFT) and describes how nuclear forces are obtained from first principles by introducing a Euclidean space-time lattice for chiral EFT. It subsequently develops the related technical aspects by addressing the two-nucleon problem on the lattice and clarifying how it fixes the numerical values of the low-energy constants of chiral EFT. In turn, the spherical wall method is introduced and used to show how improved lattice actions render higher-order corrections perturbative. The book also presents Monte Carlo algorithms used in actual calculations. In the last part of the book, the Euclidean time projection method is introduced and used to compute the ground-state properties of nuclei up to the mid-mass region. In this context, the construction of appropriate trial wave functions for the Euclidean time projection is discussed, as well as methods for determining the energies of the low-lying excitations and their spatial structure. In addition, the so-called adiabatic Hamiltonian, which allows nuclear reactions to be precisely calculated, is introduced using the example of alpha-alpha scattering. In closing, the book demonstrates how Nuclear Lattice EFT can be extended to studies of unphysical values of the fundamental parameters, using the triple-alpha process as a concrete example with implications for the anthropic view of the Universe. Nuclear Lattice Effective Field Theory offers a concise, self-contained, and introductory text suitable for self-study use by graduate students and newcomers to the field of modern computational techniques for atomic nuclei and nuclear reactions.
Nuclear physics. --- Nuclear fusion. --- Nuclear Physics, Heavy Ions, Hadrons. --- Numerical and Computational Physics, Simulation. --- Nuclear Fusion. --- Fusion, Nuclear --- Fusion reactions --- Fusion --- Nuclear reactions --- Atomic nuclei --- Atoms, Nuclei of --- Nucleus of the atom --- Physics --- Lattice field theory. --- Field theory (Physics) --- Lattice theory --- Heavy ions. --- Physics. --- Natural philosophy --- Philosophy, Natural --- Physical sciences --- Dynamics --- Ions
Choose an application
The present research studies the fundamental physics occurring during the magnetic flux and magnetized plasma compression by plasma implosion. This subject is relevant to numerous studies in laboratory and space plasmas. Recently, it has attracted particular interest due to the advances in producing high-energy-density plasmas in fusion-oriented experiments, based on the approach of magnetized plasma compression. The studied configuration consists of a cylindrical gas-puff shell with pre-embedded axial magnetic field that pre-fills the anode-cathode gap. Subsequently, axial pulsed current is driven through the plasma generating an azimuthal magnetic field that compresses the plasma and the axial magnetic field embedded in it. A key parameter for the understanding of the physics occurring during the magnetized plasma compression is the evolution and distribution of the axial and azimuthal magnetic fields. Here, for the first time ever, both fields are measured simultaneously employing non-invasive spectroscopic methods that are based on the polarization properties of the Zeeman effect. These measurements reveal unexpected results of the current distribution and the nature of the equilibrium between the axial and azimuthal fields. These observations show that a large part of the current does not flow in the imploding plasma, rather it flows through a low-density plasma residing at large radii. The development of a force-free current configuration is suggested to explain this phenomenon. Previously unpredicted observations in higher-power imploding-magnetized-plasma experiments, including recent unexplained structures observed in the Magnetized Liner Inertial Fusion experiment, may be connected to the present discovery.
Plasma (Ionized gases) --- Magnetic flux compression. --- Nuclear fusion. --- Magnetism. --- Plasma Physics. --- Nuclear Fusion. --- Magnetism, Magnetic Materials. --- Mathematical physics --- Physics --- Electricity --- Magnetics --- Fusion, Nuclear --- Fusion reactions --- Fusion --- Nuclear reactions --- Plasma (Ionized gases). --- Magnetic materials. --- Materials --- Gaseous discharge --- Gaseous plasma --- Magnetoplasma --- Ionized gases
Choose an application
This book provides a systematic and comprehensive introduction to the neutronics of advanced nuclear systems, covering all key aspects, from the fundamental theories and methodologies to a wide range of advanced nuclear system designs and experiments. It is the first-ever book focusing on the neutronics of advanced nuclear systems in the world. Compared with traditional nuclear systems, advanced nuclear systems are characterized by more complex geometry and nuclear physics, and pose new challenges in terms of neutronics. Based on the achievements and experiences of the author and his team over the past few decades, the book focuses on the neutronics characteristics of advanced nuclear systems and introduces novel neutron transport methodologies for complex systems, high-fidelity calculation software for nuclear design and safety evaluation, and high-intensity neutron source and technologies for neutronics experiments. At the same time, it describes the development of various neutronics designs for advanced nuclear systems, including neutronics design for ITER, CLEAR and FDS series reactors. The book not only summarizes the progress and achievements of the author’s research work, but also highlights the latest advances and investigates the forefront of the field and the road ahead.
Nuclear fusion. --- Nuclear physics. --- Nuclear Energy. --- Nuclear Fusion. --- Nuclear Physics, Heavy Ions, Hadrons. --- Atomic nuclei --- Atoms, Nuclei of --- Nucleus of the atom --- Physics --- Fusion, Nuclear --- Fusion reactions --- Fusion --- Nuclear reactions --- Nuclear energy. --- Heavy ions. --- Ions --- Atomic energy --- Atomic power --- Energy, Atomic --- Energy, Nuclear --- Nuclear power --- Power, Atomic --- Power, Nuclear --- Force and energy --- Nuclear physics --- Power resources --- Nuclear engineering --- Nuclear facilities --- Nuclear power plants
Choose an application
This work introduces heavy ion beam probe diagnostics and presents an overview of its applications. The heavy ion beam probe is a unique tool for the measurement of potential in the plasma core in order to understand the role of the electric field in plasma confinement, including the mechanism of transition from low to high confinement regimes (L–H transition). This allows measurement of the steady-state profile of the plasma potential, and its use has been extended to include the measurement of quasi-monochromatic and broadband oscillating components, the turbulent-particle flux and oscillations of the electron density and poloidal magnetic field. Special emphasis is placed on the study of Geodesic Acoustic Modes and Alfvén Eigenmodes excited by energetic particles with experimental data sets. These experimental studies help to understand the link between broadband turbulent physics and quasi-coherent oscillations in devices with a rather different magnetic configuration. The book also compares spontaneous and biased transitions from low to high confinement regimes on both classes of closed magnetic traps (tokamak and stellarator) and highlights the common features in the behavior of electric potential and turbulence of magnetized plasmas. A valuable resource for physicists, postgraduates and students specializing in plasma physics and controlled fusion.
Plasma (Ionized gases) --- Gaseous discharge --- Gaseous plasma --- Magnetoplasma --- Ionized gases --- Nuclear fusion. --- Plasma Physics. --- Nuclear Fusion. --- Numerical and Computational Physics, Simulation. --- Energy Systems. --- Nuclear Energy. --- Fusion, Nuclear --- Fusion reactions --- Fusion --- Nuclear reactions --- Plasma (Ionized gases). --- Physics. --- Energy systems. --- Nuclear energy. --- Atomic energy --- Atomic power --- Energy, Atomic --- Energy, Nuclear --- Nuclear power --- Power, Atomic --- Power, Nuclear --- Force and energy --- Nuclear physics --- Power resources --- Nuclear engineering --- Nuclear facilities --- Nuclear power plants --- Natural philosophy --- Philosophy, Natural --- Physical sciences --- Dynamics
Listing 1 - 6 of 6 |
Sort by
|