Narrow your search

Library

KU Leuven (41)

Odisee (41)

Thomas More Kempen (41)

Thomas More Mechelen (41)

UCLL (41)

ULB (41)

ULiège (41)

VIVES (41)

UGent (40)

VUB (2)

More...

Resource type

book (41)


Language

English (41)


Year
From To Submit

2019 (41)

Listing 1 - 10 of 41 << page
of 5
>>
Sort by

Book
Computational Approaches for Chemistry Under Extreme Conditions
Author:
ISBN: 3030056007 303005599X Year: 2019 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents recently developed computational approaches for the study of reactive materials under extreme physical and thermodynamic conditions. It delves into cutting edge developments in simulation methods for reactive materials, including quantum calculations spanning nanometer length scales and picosecond timescales, to reactive force fields, coarse-grained approaches, and machine learning methods spanning microns and nanoseconds and beyond. These methods are discussed in the context of a broad range of fields, including prebiotic chemistry in impacting comets, studies of planetary interiors, high pressure synthesis of new compounds, and detonations of energetic materials. The book presents a pedagogical approach for these state-of-the-art approaches, compiled into a single source for the first time. Ultimately, the volume aims to make valuable research tools accessible to experimentalists and theoreticians alike for any number of scientific efforts, spanning many different types of compounds and reactive conditions.


Book
Physical Chemistry from a Different Angle Workbook : Exercises and Solutions
Authors: ---
ISBN: 3030284913 3030284905 Year: 2019 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

As a companion to the undergraduate textbook “Physical Chemistry from a Different Angle”, this workbook offers an excellent opportunity to deepen the understanding of the concepts presented in the textbook by addressing specific problems. The workbook is divided into two parts: a first part with nearly 200 exercises and a second part providing the corresponding detailed solutions with helpful comments, enabling students to learn independently.


Book
Energy Transfer Processes in Polynuclear Lanthanide Complexes
Author:
ISBN: 9811360499 9811360480 Year: 2019 Publisher: Singapore : Springer Singapore : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book describes the luminescence mechanism of polynuclear lanthanide complexes, focusing on energy transfer processes using a combination of experimental and theoretical approaches. Lanthanide complexes show intense luminescence from the lanthanide ion through sensitization by the organic ligands. The high chromaticity of the emission and the long lifetimes of the complexes are particularly attractive for applications such as organic light-emitting diodes and bioprobes. Polynuclear lanthanide complexes (coordination polymers and clusters) have attracted considerable interest for functionalization by energy transfer between lanthanide ions. At the same time, such extra processes complicate the luminescence mechanism, hindering the rational design of functional polynuclear lanthanide complexes. Firstly, the book explains the principle of the theoretical methods, and then describes the concentration-quenching mechanism in coordination polymers. It also examines the effect of intrinsic spin–orbit coupling arising from lanthanide ions on the ligand-to-lanthanide energy transfer efficiency and the mechanism of back energy transfer (the opposite of sensitizing energy transfer) in lanthanide clusters. This sets the stage for the final topic: the suppression of back energy transfer by energy transfer between lanthanide ions in lanthanide clusters, which is of critical importance, showing that the lanthanide clusters can be considered a new generation of functional and efficient luminescent material and could also provide a breakthrough in lanthanide photophysics.


Book
Deep Eutectic Solvents
Author:
ISBN: 3030006085 3030006077 Year: 2019 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This is one of the first books fully dedicated to the rapidly advancing and expanding research area of deep eutectic solvents. Written by the internationally recognized expert in solution chemistry, it supplies full information regarding preparation of these new eco-friendly solvents, their properties and applications. The current and potential applications of deep eutectic solvents as organic reaction media, catalytic system, in biomass processing, nanotechnology and metal finishing industry, as well as for extraction and separation are extensively discussed.This highly informative and carefully presented book will appeal to practicing chemists (organic chemists, polymer chemists, biochemists) as well as chemical engineers and environmental scientists.


Book
Characterization of Cavitation Bubbles and Sonoluminescence
Authors: --- --- ---
ISBN: 3030117170 3030117162 Year: 2019 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents the latest research on fundamental aspects of acoustic bubbles, and in particular on various complementary ways to characterize them. It starts with the dynamics of a single bubble under ultrasound, and then addresses few-bubble systems and the formation and development of bubble structures, before briefly reviewing work on isolated bubbles in standing acoustic waves (bubble traps) and multibubble systems where translation and interaction of bubbles play a major role. Further, it explores the interaction of bubbles with objects, and highlights non-spherical bubble dynamics and the respective collapse geometries. It also discusses the important link between bubble dynamics and energy focusing in the bubble, leading to sonochemistry and sonoluminescence. The second chapter focuses on the emission of light by cavitation bubbles at collapse (sonoluminescence) and on the information that can be gained by sonoluminescence (SL) spectroscopy, e.g. the conditions reached inside the bubbles or the nature of the excited species formed. This chapter also includes a section on the use of SL intensity measurement under pulsed ultrasound as an indirect way to estimate bubble size and size distribution. Lastly, since one very important feature of cavitation systems is their sonochemical activity, the final chapter presents chemical characterizations, the care that should be taken in using them, and the possible visualization of chemical activity. It also explores the links between bubble dynamics, SL spectroscopy and sonochemical activity. This book provides a fundamental basis for other books in the Molecular Science: Ultrasound and Sonochemistry series that are more focused on applied aspects of sonochemistry. A basic knowledge of the characterization of cavitation bubbles is indispensable for the optimization of sonochemical processes, and as such the book is useful for specialists (researchers, engineers, PhD students etc.) working in the wide area of ultrasonic processing.


Book
The Structure Dependent Energy of Organic Compounds
Author:
ISBN: 3030060047 3030060039 Year: 2019 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This brief introduces readers to an alternative thermochemical reference system that makes it possible to use the heats of formation of organic compounds to deduce the energies that depend entirely on their structures, and which provides calculated values for most of the characteristic structures appearing in organic molecules. These structure-dependent energies are provided e.g. for selected compounds of normal and cyclic alkanes, open chain and cyclic olefins (including conjugated polyenes), alkynes, aromatic hydrocarbons and their substituted derivatives. The oxygen, sulfur and nitrogen derivatives of the above-mentioned compounds are also represented with calculated structure-dependent energies including alcohols, ethers, aldehydes and ketones, carboxylic acids, thiols, sulfides, amines, amides, heterocyclic compounds and others. Most organic reactions can be interpreted as the disappearance of certain structures and formation of others. If the structure-dependent energies are known, it can be shown how the disappearing and the newly formed structures contribute to the heat of reactions and to the driving forces. As experienced by the author, who pioneered the concept, structure dependent energies can help teachers to make organic chemistry more accessible for their students. Accordingly, the brief offers a valuable resource for all those who teach organic chemistry at universities, and for those who are learning it.


Book
Glassy Nuclei in Amorphous Ice : Novel Evidence for the Two-Liquids Nature of Water
Author:
ISBN: 3658263245 3658263237 Year: 2019 Publisher: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Christina Maria Tonauer finds novel evidence for the first-order nature of the transition between high-density amorphous ice (HDA) and low-density amorphous ice (LDA), supporting water’s liquid-liquid transition scenarios. Pressure-dependent crystallisation experiments of differently prepared expanded high-density amorphous ice samples (eHDA) and subsequent powder x-ray diffraction experiments disclose nucleation of LDA domains in bulk HDA, a typical feature of a first-order transition. The comparison of pressure-dependent crystallisation temperatures of eHDA samples with LDA nuclei and bulk LDA allows the estimation of the Laplace pressure and the size of a LDA nucleus. Contents Water’s Polyamorphism High-Pressure in situ Volumetry and Powder X-Ray Diffraction Studies of Amorphous Ices Nucleation of Glassy Nuclei in High-Density Amorphous Ice Phase Transitions in Nanosized Amorphous Nuclei Target Groups University lecturers, students, and researchers (experimentalists and theoreticians) working in the field of water science, focusing on anomalies of cold and supercooled water Material scientists and engineers in the field of amorphous systems The Author Christina Maria Tonauer is currently a doctoral candidate at the Institute of Physical Chemistry at the University of Innsbruck, Austria. The focus of her scientific interests is on the physico-chemical characteristics and the reactivity of crystalline and amorphous water ices.


Book
Introduction to Ultrasound, Sonochemistry and Sonoelectrochemistry
Authors: ---
ISBN: 3030258629 3030258610 Year: 2019 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides an introduction to the fundamental and applied aspects of sonochemistry, discussing a number of basic concepts in sonochemistry, such as how ultrasonic waves interact with gas bubbles in liquids to generate cavitation, and how the high temperatures generated within cavitation bubbles could be estimated. It explains how redox radicals are produced and how to make use of both the physical and chemical forces generated during cavitation for various applications. Intended for academic researchers, industry professionals as well as undergraduate and graduate students, especially those starting on a new research topic or those new to the field, it provides a clear understanding of the concepts and methodologies involved in ultrasonic and sonochemistry.


Book
Photoinduced Molecular Dynamics in Solution : Multiscale Modelling and the Link to Ultrafast Experiments
Author:
ISBN: 3030286118 303028610X Year: 2019 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book explores novel computational strategies for simulating excess energy dissipation alongside transient structural changes in photoexcited molecules, and accompanying solvent rearrangements. It also demonstrates in detail the synergy between theoretical modelling and ultrafast experiments in unravelling various aspects of the reaction dynamics of solvated photocatalytic metal complexes. Transition metal complexes play an important role as photocatalysts in solar energy conversion, and the rational design of metal-based photocatalytic systems with improved efficiency hinges on the fundamental understanding of the mechanisms behind light-induced chemical reactions in solution. Theory and atomistic modelling hold the key to uncovering these ultrafast processes. Linking atomistic simulations and modern X-ray scattering experiments with femtosecond time resolution, the book highlights previously unexplored dynamical changes in molecules, and discusses the development of theoretical and computational frameworks capable of interpreting the underlying ultrafast phenomena.


Book
Study of Bacteriorhodopsin in a Controlled Lipid Environment
Author:
ISBN: 9811312389 9811312370 Year: 2019 Publisher: Singapore : Springer Singapore : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on the study of how the properties of nanodiscs, such as lipid composition and size, influence the function of the embedding integral membrane protein, bacteriorhodopsin. The author performed systematic studies to show that the lipid composition and the charge of the hydrophobic head and the structure of hydrophilic tails affect the photocycle pathway of bacteriorhodopsin, which is closely associated with its proton-pumping activity. Furthermore, the author demonstrated a highly efficient method for extracting membrane proteins directly from the biological membrane, preserving protein conformation, function and essential native lipids. This book demonstrates optimization and sample preparation, and presents practical methods of preparing membrane protein-embedded nanodisc samples for biophysical studies, which benefit structural and functional studies in the field of membrane protein characterization, both.

Listing 1 - 10 of 41 << page
of 5
>>
Sort by