Listing 1 - 1 of 1 |
Sort by
|
Choose an application
This volume presents a full mathematical exposition of the growing field of coronal seismology which will prove invaluable for graduate students and researchers alike. Roberts' detailed and original research draws upon the principles of fluid mechanics and electromagnetism, as well as observations from the TRACE and SDO spacecraft and key results in solar wave theory. The unique challenges posed by the extreme conditions of the Sun's atmosphere, which often frustrate attempts to develop a comprehensive theory, are tackled with rigour and precision; complex models of sunspots, coronal loops and prominences are presented, based on a magnetohydrodynamic (MHD) view of the solar atmosphere, and making use of Faraday's concept of magnetic flux tubes to analyse oscillatory phenomena. The rapid rate of progress in coronal seismology makes this essential reading for those hoping to gain a deeper understanding of the field.
Helioseismology. --- Magnetohydrodynamic waves. --- Fluid dynamics. --- Solar atmosphere. --- Electromagnetism. --- Héliosismologie. --- Fluides, Dynamique des. --- Soleil --- Électromagnétisme. --- Atmosphère. --- Helioseismology --- Magnetohydrodynamic waves --- Fluid dynamics --- Solar atmosphere --- Electromagnetism --- Electromagnetics --- Magnetic induction --- Magnetism --- Metamaterials --- Atmosphere, Solar --- Heliosphere (Astrophysics) --- Stars --- Dynamics --- Fluid mechanics --- Alfvén waves --- Alvén waves --- Hydromagnetic waves --- MHD waves --- Magnetohydrodynamics --- Plasma waves --- Space plasmas --- Solar dynamics --- Solar seismology --- Astroseismology --- Atmospheres --- Dynamique des fluides. --- Héliosismologie. --- Électromagnétisme. --- Atmosphère.
Listing 1 - 1 of 1 |
Sort by
|