Listing 1 - 10 of 20 | << page >> |
Sort by
|
Choose an application
Single-domain antibodies (sdAbs) represent the minimal antigen binding-competent form of the immunoglobulin domain and have unique properties and applications. SdAbs are naturally produced as the variable domains of the heavy chain-only antibodies of camelid ruminants and cartilaginous fishes, but can also be engineered synthetically from autonomous human or mouse VH or VL domains. The scope of this research topic and associated e-book covers current understanding and new developments in (i) the biology, immunology and immunogenetics of sdAbs in camelids and cartilaginous fishes, (ii) strategies for sdAb discovery, (iii) protein engineering approaches to increase the solubility, stability and antigen-binding affinity of sdAbs and (iv) specialized applications of sdAbs in areas such diagnostics, imaging and therapeutics.
antibody engineering --- antibody discovery --- therapeutic antibody --- diagnostic antibody --- single-domain antibody
Choose an application
Single-domain antibodies (sdAbs) represent the minimal antigen binding-competent form of the immunoglobulin domain and have unique properties and applications. SdAbs are naturally produced as the variable domains of the heavy chain-only antibodies of camelid ruminants and cartilaginous fishes, but can also be engineered synthetically from autonomous human or mouse VH or VL domains. The scope of this research topic and associated e-book covers current understanding and new developments in (i) the biology, immunology and immunogenetics of sdAbs in camelids and cartilaginous fishes, (ii) strategies for sdAb discovery, (iii) protein engineering approaches to increase the solubility, stability and antigen-binding affinity of sdAbs and (iv) specialized applications of sdAbs in areas such diagnostics, imaging and therapeutics.
antibody engineering --- antibody discovery --- therapeutic antibody --- diagnostic antibody --- single-domain antibody
Choose an application
Single-domain antibodies (sdAbs) represent the minimal antigen binding-competent form of the immunoglobulin domain and have unique properties and applications. SdAbs are naturally produced as the variable domains of the heavy chain-only antibodies of camelid ruminants and cartilaginous fishes, but can also be engineered synthetically from autonomous human or mouse VH or VL domains. The scope of this research topic and associated e-book covers current understanding and new developments in (i) the biology, immunology and immunogenetics of sdAbs in camelids and cartilaginous fishes, (ii) strategies for sdAb discovery, (iii) protein engineering approaches to increase the solubility, stability and antigen-binding affinity of sdAbs and (iv) specialized applications of sdAbs in areas such diagnostics, imaging and therapeutics.
antibody engineering --- antibody discovery --- therapeutic antibody --- diagnostic antibody --- single-domain antibody
Choose an application
The Natural Anti-Gal Antibody as Foe Turned Friend in Medicine provides a comprehensive review of the natural anti-Gal antibody, which is the most abundant antibody in humans constituting ~1% of immunoglobulins and the carbohydrate antigen it recognizes, the?-gal epitope. It discusses the discovery of this antigen/antibody system, its evolution in mammals, the pathological effects of this antibody, and its possible use in various therapies in humans. Most significantly, the book discusses microbial and regenerative therapies in which an antibody present in all humans may be harnessed as an in vivo pharmaceutical agent that enables a wide variety of therapies. Some of these therapies are described as experimental studies that are compiled in this book, other already studied therapies in the area of cancer immunotherapy are also included in this book.
Choose an application
Antigen-antibody reactions. --- Antigens --- Analysis --- Immunity --- Immunoglobulins --- Antibody-antigen reactions --- Immune response --- Immunology
Choose an application
The book Cytotoxicity is aimed to be an essential reading to all medical students, biologists, biochemists and professionals involved in the field of toxicology. This book is a useful and ideal guide for novice researchers interested in learning research methods to study cytotoxic bioactive compounds. The parts of this book describe the replacement and different applications of the cytotoxic agents. All chapters are written by paramount experts in cytotoxicity research. This will hopefully stimulate more research initiatives, funding, and critical insight into the already increasing demand for cytotoxicity researches that have been evidenced worldwide.
Toxicology. --- Cytotoxicity. --- Chemicals --- Medicine --- Pharmacology --- Poisoning --- Poisons --- Toxicology --- Antibody-dependent cell cytotoxicity. --- ADCC (Immunology) --- Antibody-dependent cell-mediated cytotoxicity --- Antibody-dependent cellular cytotoxicity --- Cytotoxicity, Antibody-dependent cell --- Macrophage cell killing --- Null cell killing --- Cellular immunity --- Killer cells --- Toxicology and Pharmaceutical Science --- Medical Toxicology --- Health Sciences
Choose an application
Monoclonal antibodies and Fc-fusion proteins used clinically are Fc-based therapeutics that grow fastest in the pharmaceutical industry. Since they both contain an Fc fragment, engineering of Fc fragments could be a platform for improving Fc-based drug efficacy. Fc engineering includes various aspects: stabilization of Fc; regulation of effector functions including antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity; extension of serum half-life by modification of neonatal Fc receptor (FcRn) binding; monomerization or heterodimerization of Fc for design of new Fc formats. Currently, many new methods are being used in Fc engineering. Compared to traditional methods such as site mutagenesis on certain positions by amino acid replacement, new methods such as display-based technology can confer high throughput screening and obtain optimized variants relatively quickly, accelerating the drug development process. With the new methods, many new Fc variants were identified. On this Research Topic we are going to review the progress in current Fc engineering including the new engineering methods and the Fc variants or constructs they have produced, and the potential of these new Fcs in clinical use.
effector function --- Fc receptor --- heterodimeric Fc --- Fc-fusion protein --- monomeric Fc --- Monoclonal antibody --- Fc engineering
Choose an application
Monoclonal antibodies and Fc-fusion proteins used clinically are Fc-based therapeutics that grow fastest in the pharmaceutical industry. Since they both contain an Fc fragment, engineering of Fc fragments could be a platform for improving Fc-based drug efficacy. Fc engineering includes various aspects: stabilization of Fc; regulation of effector functions including antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity; extension of serum half-life by modification of neonatal Fc receptor (FcRn) binding; monomerization or heterodimerization of Fc for design of new Fc formats. Currently, many new methods are being used in Fc engineering. Compared to traditional methods such as site mutagenesis on certain positions by amino acid replacement, new methods such as display-based technology can confer high throughput screening and obtain optimized variants relatively quickly, accelerating the drug development process. With the new methods, many new Fc variants were identified. On this Research Topic we are going to review the progress in current Fc engineering including the new engineering methods and the Fc variants or constructs they have produced, and the potential of these new Fcs in clinical use.
effector function --- Fc receptor --- heterodimeric Fc --- Fc-fusion protein --- monomeric Fc --- Monoclonal antibody --- Fc engineering
Choose an application
Monoclonal antibodies and Fc-fusion proteins used clinically are Fc-based therapeutics that grow fastest in the pharmaceutical industry. Since they both contain an Fc fragment, engineering of Fc fragments could be a platform for improving Fc-based drug efficacy. Fc engineering includes various aspects: stabilization of Fc; regulation of effector functions including antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity; extension of serum half-life by modification of neonatal Fc receptor (FcRn) binding; monomerization or heterodimerization of Fc for design of new Fc formats. Currently, many new methods are being used in Fc engineering. Compared to traditional methods such as site mutagenesis on certain positions by amino acid replacement, new methods such as display-based technology can confer high throughput screening and obtain optimized variants relatively quickly, accelerating the drug development process. With the new methods, many new Fc variants were identified. On this Research Topic we are going to review the progress in current Fc engineering including the new engineering methods and the Fc variants or constructs they have produced, and the potential of these new Fcs in clinical use.
effector function --- Fc receptor --- heterodimeric Fc --- Fc-fusion protein --- monomeric Fc --- Monoclonal antibody --- Fc engineering
Choose an application
The high effectiveness of antibodies as anti-tumor therapeutic agents has led to a burst of research aiming to increase their therapeutic applications by the use of antibodies against new targets, new antibody formats or new combinations. In this e-book we present relevant research depicting the current efforts in the field.
Listing 1 - 10 of 20 | << page >> |
Sort by
|