Listing 1 - 10 of 1841 | << page >> |
Sort by
|
Choose an application
A practical guide to mastering reinforcement learning algorithms using Keras Key Features Build projects across robotics, gaming, and finance fields, putting reinforcement learning (RL) into action Get to grips with Keras and practice on real-world unstructured datasets Uncover advanced deep learning algorithms such as Monte Carlo, Markov Decision, and Q-learning Book Description Reinforcement learning has evolved a lot in the last couple of years and proven to be a successful technique in building smart and intelligent AI networks. Keras Reinforcement Learning Projects installs human-level performance into your applications using algorithms and techniques of reinforcement learning, coupled with Keras, a faster experimental library. The book begins with getting you up and running with the concepts of reinforcement learning using Keras. You'll learn how to simulate a random walk using Markov chains and select the best portfolio using dynamic programming (DP) and Python. You'll also explore projects such as forecasting stock prices using Monte Carlo methods, delivering vehicle routing application using Temporal Distance (TD) learning algorithms, and balancing a Rotating Mechanical System using Markov decision processes. Once you've understood the basics, you'll move on to Modeling of a Segway, running a robot control system using deep reinforcement learning, and building a handwritten digit recognition model in Python using an image dataset. Finally, you'll excel in playing the board game Go with the help of Q-Learning and reinforcement learning algorithms. By the end of this book, you'll not only have developed hands-on training on concepts, algorithms, and techniques of reinforcement learning but also be all set to explore the world of AI. What you will learn Practice the Markov decision process in prediction and betting evaluations Implement Monte Carlo methods to forecast environment behaviors Explore TD learning algorithms to manage warehouse operations Construct a Deep Q-Network using Python and Keras to control robot movements Apply reinforcement concepts to build a handwritten digit recognition model using an image dataset Address a game theory problem using Q-Learning and OpenAI Gym Who this book is for Keras Reinforcement Learning Projects is for you if you are data scientist, machine learning developer, or AI engineer who wants to understand the fundamentals of reinforcement learning by developing practical projects. Sound knowledge o...
Choose an application
This volume takes a broad view of multimodality as it applies to a wide range of subject areas, curriculum design, and classroom processes to examine the ways in which multiple modes combine in contemporary classrooms and its subsequent impact on student learning. Grounded in a systemic functional linguistic framework and featuring contributions from scholars across educational and multimodal research, the book begins with a historical overview of multimodality’s place in Western education and then moves to a discussion of the challenges and rewards of integrating multimodal texts and ever-evolving technologies in a variety of settings, include primary, language, music, early childhood, Montessori, and online classrooms. As a state of the art of teaching and learning through different modalities in different educational contexts, this book is an indispensable resource for students and scholars in applied linguistics, multimodality, and language education.
Choose an application
Choose an application
AN INTRODUCTION TO MACHINE LEARNING THAT INCLUDES THE FUNDAMENTAL TECHNIQUES, METHODS, AND APPLICATIONS Machine Learning: a Concise Introduction offers a comprehensive introduction to the core concepts, approaches, and applications of machine learning. The author-an expert in the field-presents fundamental ideas, terminology, and techniques for solving applied problems in classification, regression, clustering, density estimation, and dimension reduction. The design principles behind the techniques are emphasized, including the bias-variance trade-off and its influence on the design of ensemble methods. Understanding these principles leads to more flexible and successful applications. Machine Learning: a Concise Introduction also includes methods for optimization, risk estimation, and model selection- essential elements of most applied projects. This important resource: -Illustrates many classification methods with a single, running example, highlighting similarities and differences between methods -Presents R source code which shows how to apply and interpret many of the techniques covered -Includes many thoughtful exercises as an integral part of the text, with an appendix of selected solutions -Contains useful information for effectively communicating with clients A volume in the popular Wiley Series in Probability and Statistics, Machine Learning: a Concise Introduction offers the practical information needed for an understanding of the methods and application of machine learning. STEVEN W. KNOX holds a Ph. D. in Mathematics from the University of Illinois and an M.S. in Statistics from Carnegie Mellon University. He has over twenty years' experience in using Machine Learning, Statistics, and Mathematics to solve real-world problems. He currently serves as Technical Director of Mathematics Research and Senior Advocate for Data Science at the National Security Agency.
Choose an application
Choose an application
Learning --- Adult learning --- Philosophy --- Learning - Philosophy
Choose an application
Choose an application
Choose an application
Choose an application
Listing 1 - 10 of 1841 | << page >> |
Sort by
|