Listing 1 - 9 of 9 |
Sort by
|
Choose an application
The dairy chain is an integral part of global food supply, with dairy food products a staple component of recommended healthy diets. The dairy food chain from production through to the consumer is complex, with various opportunities for microbial contamination of ingredients or food product, and as such interventions are key to preventing or controlling such contamination. Dairy foods often include a microbial control step in their production such as pasteurization, but in some cases may not, as with raw milk cheeses. Microbial contamination may lead to a deterioration in food quality due to spoilage organisms, or may become a health risk to consumers should the contaminant be a pathogenic microorganism. As such food safety and food production are intrinsically linked. This Research Topic eBook includes submissions on issues relating to the microbiological integrity of the dairy food chain, such as the ecology of pathogenic and spoilage organisms through the dairy farm to fork paradigm, their significance to dairy foods and health, and genomic analysis of these microorganisms.
Sporeformers --- Spoilage --- Dairy --- Biofilm --- Pathogenic bacteria --- Coliforms --- Microbiome
Choose an application
The dairy chain is an integral part of global food supply, with dairy food products a staple component of recommended healthy diets. The dairy food chain from production through to the consumer is complex, with various opportunities for microbial contamination of ingredients or food product, and as such interventions are key to preventing or controlling such contamination. Dairy foods often include a microbial control step in their production such as pasteurization, but in some cases may not, as with raw milk cheeses. Microbial contamination may lead to a deterioration in food quality due to spoilage organisms, or may become a health risk to consumers should the contaminant be a pathogenic microorganism. As such food safety and food production are intrinsically linked. This Research Topic eBook includes submissions on issues relating to the microbiological integrity of the dairy food chain, such as the ecology of pathogenic and spoilage organisms through the dairy farm to fork paradigm, their significance to dairy foods and health, and genomic analysis of these microorganisms.
Sporeformers --- Spoilage --- Dairy --- Biofilm --- Pathogenic bacteria --- Coliforms --- Microbiome
Choose an application
The dairy chain is an integral part of global food supply, with dairy food products a staple component of recommended healthy diets. The dairy food chain from production through to the consumer is complex, with various opportunities for microbial contamination of ingredients or food product, and as such interventions are key to preventing or controlling such contamination. Dairy foods often include a microbial control step in their production such as pasteurization, but in some cases may not, as with raw milk cheeses. Microbial contamination may lead to a deterioration in food quality due to spoilage organisms, or may become a health risk to consumers should the contaminant be a pathogenic microorganism. As such food safety and food production are intrinsically linked. This Research Topic eBook includes submissions on issues relating to the microbiological integrity of the dairy food chain, such as the ecology of pathogenic and spoilage organisms through the dairy farm to fork paradigm, their significance to dairy foods and health, and genomic analysis of these microorganisms.
Sporeformers --- Spoilage --- Dairy --- Biofilm --- Pathogenic bacteria --- Coliforms --- Microbiome
Choose an application
Throughout the food processing chain and after ingestion by the host, food associated bacteria have to cope with a range of stress factors such as thermal and/or non-thermal inactivation treatments, refrigeration temperatures, freeze-drying, high osmolarity, acid pH in the stomach or presence of bile salts in the intestine, that threaten bacterial survival. The accompanying plethora of microbial response and adaptation phenomena elicited by these stresses has important implications for food technology and safety. Indeed, while resistance development of pathogenic and spoilage microorganisms may impose health risks for the consumer and impart great economic losses to food industries, reduced survival of probiotic bacteria may strongly compromise their claimed health benefit attributes. As a result, substantial research efforts have been devoted in the last decades to unravel the mechanisms underlying stress response and resistance development in food associated microorganisms in order to better predict and improve (i) the inactivation of foodborne pathogens and spoilage microorganisms on the one hand and (ii) the robustness and performance of beneficial microorganisms on the other. Moreover, the recent implementation of system-wide omics and (single-)cell biology approaches is greatly boosting our insights into the modes of action underlying microbial inactivation and survival. This Research Topic aims to provide an avenue for dissemination of recent advances within the field of microbial stress response and adaptation, with a particular focus not only on food spoilage and pathogenic microorganisms but also on beneficial microbes in foods.
food safety --- stress response --- pathogens --- spoilage bacteria --- bacterial stress response --- food quality --- food microbiology --- food preservation
Choose an application
The ingestion of food containing pathogenic microorganisms (i.e. bacteria and their toxins, fungi, viruses) and parasites can cause food-borne diseases in humans. A growing number of emerging pathogens, changes of virulence of known pathogens and appearance of antibiotic resistance has recently exposed consumers to a major risk of illness. Also infected people and the environment can spread microorganisms on raw or processed food. Outbreaks of food-borne diseases are often unrecognized, unreported, or not investigated and particularly in developing countries their agents and sources are mostly unknown. Surveillance and analytical methods aiming at their detection are to be hoped, as well as good strategies to struggle against these threats. This E-book is subdivided in chapters regarding to pathogenic and spoiling microorganisms, chemical hazards produced by biological agents and food safety management systems.
Food-borne diseases --- pathogens --- food spoilage --- Management systems --- Food Safety --- Biofilm
Choose an application
The ingestion of food containing pathogenic microorganisms (i.e. bacteria and their toxins, fungi, viruses) and parasites can cause food-borne diseases in humans. A growing number of emerging pathogens, changes of virulence of known pathogens and appearance of antibiotic resistance has recently exposed consumers to a major risk of illness. Also infected people and the environment can spread microorganisms on raw or processed food. Outbreaks of food-borne diseases are often unrecognized, unreported, or not investigated and particularly in developing countries their agents and sources are mostly unknown. Surveillance and analytical methods aiming at their detection are to be hoped, as well as good strategies to struggle against these threats. This E-book is subdivided in chapters regarding to pathogenic and spoiling microorganisms, chemical hazards produced by biological agents and food safety management systems.
Food-borne diseases --- pathogens --- food spoilage --- Management systems --- Food Safety --- Biofilm
Choose an application
Throughout the food processing chain and after ingestion by the host, food associated bacteria have to cope with a range of stress factors such as thermal and/or non-thermal inactivation treatments, refrigeration temperatures, freeze-drying, high osmolarity, acid pH in the stomach or presence of bile salts in the intestine, that threaten bacterial survival. The accompanying plethora of microbial response and adaptation phenomena elicited by these stresses has important implications for food technology and safety. Indeed, while resistance development of pathogenic and spoilage microorganisms may impose health risks for the consumer and impart great economic losses to food industries, reduced survival of probiotic bacteria may strongly compromise their claimed health benefit attributes. As a result, substantial research efforts have been devoted in the last decades to unravel the mechanisms underlying stress response and resistance development in food associated microorganisms in order to better predict and improve (i) the inactivation of foodborne pathogens and spoilage microorganisms on the one hand and (ii) the robustness and performance of beneficial microorganisms on the other. Moreover, the recent implementation of system-wide omics and (single-)cell biology approaches is greatly boosting our insights into the modes of action underlying microbial inactivation and survival. This Research Topic aims to provide an avenue for dissemination of recent advances within the field of microbial stress response and adaptation, with a particular focus not only on food spoilage and pathogenic microorganisms but also on beneficial microbes in foods.
food safety --- stress response --- pathogens --- spoilage bacteria --- bacterial stress response --- food quality --- food microbiology --- food preservation
Choose an application
The ingestion of food containing pathogenic microorganisms (i.e. bacteria and their toxins, fungi, viruses) and parasites can cause food-borne diseases in humans. A growing number of emerging pathogens, changes of virulence of known pathogens and appearance of antibiotic resistance has recently exposed consumers to a major risk of illness. Also infected people and the environment can spread microorganisms on raw or processed food. Outbreaks of food-borne diseases are often unrecognized, unreported, or not investigated and particularly in developing countries their agents and sources are mostly unknown. Surveillance and analytical methods aiming at their detection are to be hoped, as well as good strategies to struggle against these threats. This E-book is subdivided in chapters regarding to pathogenic and spoiling microorganisms, chemical hazards produced by biological agents and food safety management systems.
Food-borne diseases --- pathogens --- food spoilage --- Management systems --- Food Safety --- Biofilm
Choose an application
Throughout the food processing chain and after ingestion by the host, food associated bacteria have to cope with a range of stress factors such as thermal and/or non-thermal inactivation treatments, refrigeration temperatures, freeze-drying, high osmolarity, acid pH in the stomach or presence of bile salts in the intestine, that threaten bacterial survival. The accompanying plethora of microbial response and adaptation phenomena elicited by these stresses has important implications for food technology and safety. Indeed, while resistance development of pathogenic and spoilage microorganisms may impose health risks for the consumer and impart great economic losses to food industries, reduced survival of probiotic bacteria may strongly compromise their claimed health benefit attributes. As a result, substantial research efforts have been devoted in the last decades to unravel the mechanisms underlying stress response and resistance development in food associated microorganisms in order to better predict and improve (i) the inactivation of foodborne pathogens and spoilage microorganisms on the one hand and (ii) the robustness and performance of beneficial microorganisms on the other. Moreover, the recent implementation of system-wide omics and (single-)cell biology approaches is greatly boosting our insights into the modes of action underlying microbial inactivation and survival. This Research Topic aims to provide an avenue for dissemination of recent advances within the field of microbial stress response and adaptation, with a particular focus not only on food spoilage and pathogenic microorganisms but also on beneficial microbes in foods.
food safety --- stress response --- pathogens --- spoilage bacteria --- bacterial stress response --- food quality --- food microbiology --- food preservation
Listing 1 - 9 of 9 |
Sort by
|