Narrow your search

Library

AP (20)

KDG (20)

UAntwerpen (3)


Resource type

digital (22)


Language

English (22)


Year
From To Submit

2017 (22)

Listing 1 - 10 of 22 << page
of 3
>>
Sort by

Digital
Vortices and nanostructured superconductors
Author:
ISBN: 9783319593531 9783319593555 Year: 2017 Publisher: Cham Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researchers survey the most exciting and important recent developments in the field. Topics covered include: the use of scanning Hall probe microscopy to visualize interactions of a single vortex with pinning centers; Magneto-Optical Imaging for investigating what vortex avalanches are, why they appear, and how they can be controlled; and the vortex interactions responsible for the second magnetization peak. Other chapters discuss nanoengineered pinning centers of vortices for improved current-carrying capabilities, current anisotropy in cryomagnetic devices in relation to the pinning landscape, and the new physics associated with the discovery of new superconducting materials with multi-component superconductivity. The book offers something for almost everybody interested in the field: from experimental techniques to visualize vortices and study their dynamics, to a state-of-the-art theoretical microscopic approach to multicomponent superconductivity. Focuses on some of the hottest topics in superconductivity research Covers theory, experiment, and applications Features chapters from world-renowned experts who have made major advances in the field Suitable for advanced undergraduate and graduate students through experienced academic and industry researchers.


Digital
Nanostructure of superconducting tapes : a study by electron microscopy: proefschrift
Author:
Year: 2017 Publisher: Antwerp

Loading...
Export citation

Choose an application

Bookmark

Abstract


Digital
Novel mesoscopic effects and topological states in chiral p-wave superconductors : proefschrift
Author:
Year: 2017 Publisher: Antwerpen

Loading...
Export citation

Choose an application

Bookmark

Abstract


Digital
Weak-Coupling Theory of Topological Superconductivity : The Case of Strontium Ruthenate
Author:
ISBN: 9783319628677 Year: 2017 Publisher: Cham Springer International Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

This thesis sheds important new light on the puzzling properties of Strontium Ruthenate. Using a sophisticated weak-coupling approach, exact within certain limits, it shows that proper treatment of spin-orbit and multi-band effects is crucial to the physics. Based on the results of these calculations, it resolves a crucial, long-standing puzzle in the field: It demonstrates why the experimentally observed time-reversal breaking is not incompatible with the observed lack of measurable edge currents. Lastly, the thesis makes predictions for the properties of the material under uniaxial strain, which are in good agreement with recent experiments —resolving the mystery of the so-called 3K phase, and suggesting the intriguing possibility that under strain the superconductor may become conventional.


Digital
Visualising the Charge and Cooper-Pair Density Waves in Cuprates
Author:
ISBN: 9783319659756 Year: 2017 Publisher: Cham Springer International Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

  This thesis reports on the use of scanning tunnelling microscopy to elucidate the atomic-scale electronic structure of a charge density wave, revealing that it has a d-symmetry form factor, hitherto unobserved in nature. It then details the development of an entirely new class of scanned probe: the scanning Josephson tunnelling microscope. This scans the Josephson junction formed between a cuprate superconducting microscope tip and the surface of a cuprate sample, thereby imaging the superfluid density of the sample with nanometer resolution. This novel method is used to establish the existence of a spatially modulated superconducting condensate, something postulated theoretically over half a century ago but never previously observed.


Digital
Condensed Matter Applications of AdS/CFT : Focusing on Strange Metals
Author:
ISBN: 9783319618753 Year: 2017 Publisher: Cham Springer International Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book deals with applications of the AdS/CFT correspondence to strongly coupled condensed matter systems. In particular, it concerns with the study of thermo-electric transport properties of holographic models exhibiting momentum dissipation and their possible applications to the transport properties of strange metals. The present volume constitutes one of the few examples in the literature in which the topic is carefully reviewed both from the experimental and theoretical point of view, including not only holographic results but also standard condensed matter achievements developed in the past decades. This work might be extremely useful both for scientific and pedagogical purposes.


Digital
Phase Diagram and Magnetic Excitations of BaFe2-xNixAs2: A Neutron Scattering Study
Author:
ISBN: 9789811049989 Year: 2017 Publisher: Singapore Springer Singapore, Imprint: Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book studies the structural, magnetic and electronic properties of, as well as magnetic excitations in, high-temperature BaFe2-xNixAs2 superconductors using neutron diffraction and neutron spectroscopic methods. It describes the precise determination of the phase diagram of BaFe2-xNixAs2, which demonstrates strong magnetoelastic coupling and avoided quantum criticality driven by short-range incommensurate antiferromagnetic order, showing cluster spin glass behavior. It also identifies strong nematic spin correlations in the tetragonal state of uniaxial strained BaFe2-xNixAs2. The nematic correlations have similar temperature and doping dependence as resistivity anisotropy in detwinned samples, which suggests that they are intimately connected. Lastly, it investigates doping evolution of magnetic excitations in overdoped BaFe2-xNixAs2 and discusses the links with superconductivity. This book includes detailed neutron scattering results on BaFe2-xNixAs2 and an introduction to neutron scattering techniques, making it a useful guide for readers pursuing related research.


Digital
Theoretical Study on Correlation Effects in Topological Matter
Author:
ISBN: 9789811037436 Year: 2017 Publisher: Singapore Springer Singapore, Imprint: Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

This thesis elucidates electron correlation effects in topological matter whose electronic states hold nontrivial topological properties robust against small perturbations. In addition to a comprehensive introduction to topological matter, this thesis provides a new perspective on correlated topological matter. The book comprises three subjects, in which electron correlations in different forms are considered. The first focuses on Coulomb interactions for massless Dirac fermions. Using a perturbative approach, the author reveals emergent Lorentz invariance in a low-energy limit and discusses how to probe the Lorentz invariance experimentally. The second subject aims to show a principle for synthesizing topological insulators with common, light elements. The interplay between the spin–orbit interaction and electron correlation is considered, and Hund's rule and electron filling are consequently found to play a key role for a strong spin–orbit interaction important for topological insulators. The last subject is classification of topological crystalline insulators in the presence of electron correlation. Unlike non-interacting topological insulators, such two- and three-dimensional correlated insulators with mirror symmetry are demonstrated to be characterized, respectively, by the Z4 and Z8 group by using the bosonization technique and a geometrical consideration.


Digital
Perturbative and Non-perturbative Approaches to String Sigma-Models in AdS/CFT
Author:
ISBN: 9783319634203 Year: 2017 Publisher: Cham Springer International Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

This thesis introduces readers to the type II superstring theories in the AdS5×S5 and AdS4×CP3 backgrounds. Each chapter exemplifies a different computational approach to measuring observables (conformal dimensions of single-trace operators and expectation values of Wilson loop operators) relevant for two supersymmetric theories: the N=4 super Yang-Mills theory and the N=6 Chern-Simons-matter (ABJM) theory.  Perturbative techniques have traditionally been used to make quantitative predictions in quantum field theories, but they are only reliable as long as the interaction strengths are weak. The anti-de Sitter/conformal field theory (AdS/CFT) correspondence realizes physicists’ dream of studying strongly coupled quantum field theories with “enhanced” symmetries, using the methods provided by string theory.  The first part of the thesis sets up the semiclassical quantization of worldsheet sigma-model actions around string solutions of least area in AdS space. This machinery is used to capture quantum corrections at large coupling to next-to-leading and next-to-next-to-leading order by solving the determinants of partial differential operators and by computing Feynman diagrams, respectively. In turn, the second part presents an innovative approach based on Monte Carlo simulations to finite coupling for a lattice-discretized model of the AdS5×S5 superstring action.  The thesis focuses on fundamental aspects, as well as on applications previously published by the author, and offers a valuable reference work for anyone interested in the most recent developments in this field.


Digital
Fermi Surface and Quantum Critical Phenomena of High-Temperature Superconductors
Author:
ISBN: 9783319486468 Year: 2017 Publisher: Cham Springer International Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

This thesis provides a detailed introduction to quantum oscillation measurement and analysis and offers a connection between Fermi surface properties and superconductivity in high-temperature superconductors. It also discusses the field of iron-based superconductors and tests the models for the appearance of nodes in the superconducting gap of a 111-type pnictide using quantum oscillation measurements combined with band structure calculation. The same measurements were carried out to determine the quasiparticle mass in BaFe2(As1-xPx)2, which is strongly enhanced at the expected quantum critical point. While the lower superconducting critical field shows evidence of quantum criticality, the upper superconducting critical field is not influenced by the quantum critical point. These findings contradict conventional theories, demonstrating the need for a theoretical treatment of quantum critical superconductors, which has not been addressed to date. The quest to discover similar evidence in the cuprates calls for the application of extreme conditions. As such, quantum oscillation measurements were performed under high pressure in a high magnetic field, revealing a negative correlation between quasiparticle mass and superconducting critical temperature.

Listing 1 - 10 of 22 << page
of 3
>>
Sort by