Listing 1 - 10 of 13 | << page >> |
Sort by
|
Choose an application
Nitric Oxide Donors: Biomedical Applications and Perspectives presents the current state of art, challenges and innovations in the design of therapeutics nitric oxide donors with great impact in several aspects of human physiology and pathophysiology. Although considerable innovative progress has been achieved using Nitric Oxide donors in biomedical applications, certain drawbacks still need to be overcome to successfully translate these research innovations into clinical applications. This book encompasses several topics on nitric oxide such as its sources and biological properties; its performance in the cardiovascular and neurologic systems, in the human skin and its application in the treatment of neglected diseases, neurodegenerative disorders, and cancer. Additionally, it covers its role in inflammation and immunity, penile erection function, photodynamic therapy, antimicrobial activities. It also discusses the future of nitric oxide donors in combination with other therapeutic drugs, in implantable sensors, and nitric oxide releasing hydrogels and medical devices for topical applications. The book is a valuable source for researchers on different areas of biomedical field who are interested in the improvements that these molecules can make in the treatment of several conditions.
Choose an application
Choose an application
Choose an application
Nitric oxide. --- Endothelial relaxing factor --- Endothelium-derived relaxing factors --- Nitrogen oxide --- Neurotransmitters --- Nitrogen compounds --- Oxides
Choose an application
Over the last decades, nitric oxide (NO) has emerged as an essential player in redox signalling. Reactive oxygen species (ROS) also act as signals throughout all stages of plant life. Because they are potentially harmful for cellular integrity, ROS and NO levels must be tightly controlled, especially by the classical antioxidant system and additional redox-active metabolites and proteins. Recent work provided evidence that NO and ROS influence each other’s biosynthesis and removal. Moreover, novel signalling molecules resulting from the chemical reaction between NO, ROS and plant metabolites have been highlighted, including N2O3, ONOO-, NO2, S-nitrosoglutathione and 8-NO2 cGMP. They are involved in diverse plant physiological processes, the best characterized being stomata regulation and stress defense. Taken together, these new data demonstrate the complex interactions between NO, ROS signalling and the antioxidant system. This Frontiers in Plant Science Research Topic aims to provide an updated and complete overview of this important and rapidly expanding area through original article and detailed reviews.
plant development --- Reactive Oxygen Species --- plant defense --- antioxidant system --- Nitric Oxide --- Biotic and abiotic stress --- signalling
Choose an application
Over the last decades, nitric oxide (NO) has emerged as an essential player in redox signalling. Reactive oxygen species (ROS) also act as signals throughout all stages of plant life. Because they are potentially harmful for cellular integrity, ROS and NO levels must be tightly controlled, especially by the classical antioxidant system and additional redox-active metabolites and proteins. Recent work provided evidence that NO and ROS influence each other’s biosynthesis and removal. Moreover, novel signalling molecules resulting from the chemical reaction between NO, ROS and plant metabolites have been highlighted, including N2O3, ONOO-, NO2, S-nitrosoglutathione and 8-NO2 cGMP. They are involved in diverse plant physiological processes, the best characterized being stomata regulation and stress defense. Taken together, these new data demonstrate the complex interactions between NO, ROS signalling and the antioxidant system. This Frontiers in Plant Science Research Topic aims to provide an updated and complete overview of this important and rapidly expanding area through original article and detailed reviews.
plant development --- Reactive Oxygen Species --- plant defense --- antioxidant system --- Nitric Oxide --- Biotic and abiotic stress --- signalling
Choose an application
Over the last decades, nitric oxide (NO) has emerged as an essential player in redox signalling. Reactive oxygen species (ROS) also act as signals throughout all stages of plant life. Because they are potentially harmful for cellular integrity, ROS and NO levels must be tightly controlled, especially by the classical antioxidant system and additional redox-active metabolites and proteins. Recent work provided evidence that NO and ROS influence each other’s biosynthesis and removal. Moreover, novel signalling molecules resulting from the chemical reaction between NO, ROS and plant metabolites have been highlighted, including N2O3, ONOO-, NO2, S-nitrosoglutathione and 8-NO2 cGMP. They are involved in diverse plant physiological processes, the best characterized being stomata regulation and stress defense. Taken together, these new data demonstrate the complex interactions between NO, ROS signalling and the antioxidant system. This Frontiers in Plant Science Research Topic aims to provide an updated and complete overview of this important and rapidly expanding area through original article and detailed reviews.
plant development --- Reactive Oxygen Species --- plant defense --- antioxidant system --- Nitric Oxide --- Biotic and abiotic stress --- signalling
Choose an application
Nitric oxide --- Therapeutic use. --- Endothelial relaxing factor --- Endothelium-derived relaxing factors --- Nitrogen oxide --- Neurotransmitters --- Nitrogen compounds --- Oxides
Choose an application
Nitrogen compounds. --- Nitric oxide. --- Endothelial relaxing factor --- Endothelium-derived relaxing factors --- Nitrogen oxide --- Neurotransmitters --- Nitrogen compounds --- Oxides --- Chemicals
Choose an application
Stomata, the tiny pores on leaf surface, are the gateways for CO2 uptake during photosynthesis as well as water loss in transpiration. Further, plants use stomatal closure as a defensive response, often triggered by elicitors, to prevent the entry of pathogens. The guard cells are popular model systems to study the signalling mechanism in plant cells. The messengers that mediate closure upon perception of elicitors or microbe associated molecular patterns (MAMPs) are quite similar to those during ABA effects. These components include reactive oxygen species (ROS), nitric oxide (NO), cytosolic pH and intracellular Ca2+. The main components are ROS, NO and cytosolic free Ca2+. The list extends to others, such as G-proteins, protein phosphatases, protein kinases, phospholipids and ion channels. The sequence of these signalling components and their interaction during stomatal signalling are complex and quite interesting. The present e-Book provides a set of authoritative articles from ‘Special Research Topic’ on selected areas of stomatal guard cells. In the first set of two articles, an overview of ABA and MAMPs as signals is presented. The next set of 4 articles, emphasize the role of ROS, NO, Ca2+ as well as pH, as secondary messengers. The next group of 3 articles highlight the recent advances on post-translational modification of guard cell proteins, with emphasis on 14-3-3 proteins and MAPK cascades. The last article described the method to isolate epidermis of grass species and monitor stomatal responses to different signals. Our e-Book is a valuable and excellent source of information for all those interested in guard cell function as well as signal transduction in plant cells.
ABA --- Methyl Jasmonate --- Reactive Oxygen Species --- innate immunity --- Proteomics --- Epidermis --- Nitric Oxide --- Protein phosphorylation --- secondary messengers --- elicitors
Listing 1 - 10 of 13 | << page >> |
Sort by
|