Listing 1 - 4 of 4 |
Sort by
|
Choose an application
This book takes the reader on a journey through the world of college mathematics, focusing on some of the most important concepts and results in the theories of polynomials, linear algebra, real analysis, differential equations, coordinate geometry, trigonometry, elementary number theory, combinatorics, and probability. Preliminary material provides an overview of common methods of proof: argument by contradiction, mathematical induction, pigeonhole principle, ordered sets, and invariants. Each chapter systematically presents a single subject within which problems are clustered in each section according to the specific topic. The exposition is driven by nearly 1300 problems and examples chosen from numerous sources from around the world; many original contributions come from the authors. The source, author, and historical background are cited whenever possible. Complete solutions to all problems are given at the end of the book. This second edition includes new sections on quadratic polynomials, curves in the plane, quadratic fields, combinatorics of numbers, and graph theory, and added problems or theoretical expansion of sections on polynomials, matrices, abstract algebra, limits of sequences and functions, derivatives and their applications, Stokes' theorem, analytical geometry, combinatorial geometry, and counting strategies. Using the W.L. Putnam Mathematical Competition for undergraduates as an inspiring symbol to build an appropriate math background for graduate studies in pure or applied mathematics, the reader is eased into transitioning from problem-solving at the high school level to the university and beyond, that is, to mathematical research. This work may be used as a study guide for the Putnam exam, as a text for many different problem-solving courses, and as a source of problems for standard courses in undergraduate mathematics. Putnam and Beyond is organized for independent study by undergraduate and graduate students, as well as teachers and researchers in the physical sciences who wish to expand their mathematical horizons. Reviews of the first edition: The reviewer recommends this book to all students curious about the force of mathematics, especially those who are bored at school and ready for a challenge. Teachers would find this book to be a welcome resource, as will contest organizers. —Teodora-Liliana Radulescu, Zentralblatt MATH, Vol. 1122 (24), 2007 …This extraordinary book can be read for fun. However, it can also serve as a textbook for preparation for the Putnam … for an advanced problem-solving course, or even as an overview of undergraduate mathematics. … it could certainly serve as a great review for senior-level students. — Donald L. Vestal, MathDL, December, 2007.
Mathematics. --- Algebra. --- Mathematical analysis. --- Analysis (Mathematics). --- Geometry. --- Number theory. --- Combinatorics. --- Analysis. --- Number Theory. --- Global analysis (Mathematics). --- Mathematics --- Mathematical analysis --- Combinatorics --- Algebra --- Analysis, Global (Mathematics) --- Differential topology --- Functions of complex variables --- Geometry, Algebraic --- Number study --- Numbers, Theory of --- Euclid's Elements --- 517.1 Mathematical analysis
Choose an application
This book takes the reader on a journey through the world of college mathematics, focusing on some of the most important concepts and results in the theories of polynomials, linear algebra, real analysis, differential equations, coordinate geometry, trigonometry, elementary number theory, combinatorics, and probability. Preliminary material provides an overview of common methods of proof: argument by contradiction, mathematical induction, pigeonhole principle, ordered sets, and invariants. Each chapter systematically presents a single subject within which problems are clustered in each section according to the specific topic. The exposition is driven by nearly 1300 problems and examples chosen from numerous sources from around the world; many original contributions come from the authors. The source, author, and historical background are cited whenever possible. Complete solutions to all problems are given at the end of the book. This second edition includes new sections on quadratic polynomials, curves in the plane, quadratic fields, combinatorics of numbers, and graph theory, and added problems or theoretical expansion of sections on polynomials, matrices, abstract algebra, limits of sequences and functions, derivatives and their applications, Stokes' theorem, analytical geometry, combinatorial geometry, and counting strategies. Using the W.L. Putnam Mathematical Competition for undergraduates as an inspiring symbol to build an appropriate math background for graduate studies in pure or applied mathematics, the reader is eased into transitioning from problem-solving at the high school level to the university and beyond, that is, to mathematical research. This work may be used as a study guide for the Putnam exam, as a text for many different problem-solving courses, and as a source of problems for standard courses in undergraduate mathematics. Putnam and Beyond is organized for independent study by undergraduate and graduate students, as well as teachers and researchers in the physical sciences who wish to expand their mathematical horizons. Reviews of the first edition: The reviewer recommends this book to all students curious about the force of mathematics, especially those who are bored at school and ready for a challenge. Teachers would find this book to be a welcome resource, as will contest organizers. —Teodora-Liliana Radulescu, Zentralblatt MATH, Vol. 1122 (24), 2007 …This extraordinary book can be read for fun. However, it can also serve as a textbook for preparation for the Putnam … for an advanced problem-solving course, or even as an overview of undergraduate mathematics. … it could certainly serve as a great review for senior-level students. — Donald L. Vestal, MathDL, December, 2007.
Number theory --- Algebra --- Differential geometry. Global analysis --- Geometry --- Mathematical analysis --- Discrete mathematics --- algebra --- analyse (wiskunde) --- discrete wiskunde --- statistiek --- getallenleer --- geometrie
Choose an application
Building bridges between classical results and contemporary nonstandard problems, Mathematical Bridges embraces important topics in analysis and algebra from a problem-solving perspective. Blending old and new techniques, tactics and strategies used in solving challenging mathematical problems, readers will discover numerous genuine mathematical gems throughout that will heighten their appreciation of the inherent beauty of mathematics. Most of the problems are original to the authors and are intertwined in a well-motivated exposition driven by representative examples. The book is structured to assist the reader in formulating and proving conjectures, as well as devising solutions to important mathematical problems by making connections between various concepts and ideas from different areas of mathematics. Instructors and educators teaching problem-solving courses or organizing mathematics clubs, as well as motivated mathematics students from high school juniors to college seniors, will find Mathematical Bridges a useful resource in calculus, linear and abstract algebra, analysis and differential equations. Students desiring to hone and develop their mathematical skills or with an interest in mathematics competitions must have this book in their personal libraries.
Mathematics. --- Algebra. --- Math --- Mathematics --- Mathematical analysis
Choose an application
Building bridges between classical results and contemporary nonstandard problems, Mathematical Bridges embraces important topics in analysis and algebra from a problem-solving perspective. Blending old and new techniques, tactics and strategies used in solving challenging mathematical problems, readers will discover numerous genuine mathematical gems throughout that will heighten their appreciation of the inherent beauty of mathematics. Most of the problems are original to the authors and are intertwined in a well-motivated exposition driven by representative examples. The book is structured to assist the reader in formulating and proving conjectures, as well as devising solutions to important mathematical problems by making connections between various concepts and ideas from different areas of mathematics. Instructors and educators teaching problem-solving courses or organizing mathematics clubs, as well as motivated mathematics students from high school juniors to college seniors, will find Mathematical Bridges a useful resource in calculus, linear and abstract algebra, analysis and differential equations. Students desiring to hone and develop their mathematical skills or with an interest in mathematics competitions must have this book in their personal libraries.
Listing 1 - 4 of 4 |
Sort by
|