Listing 1 - 10 of 347 | << page >> |
Sort by
|
Choose an application
Dieses Buch nimmt Sie mit auf eine Entdeckungsreise durch die Welt der klassischen Geometrie: Beginnend beim Satz von Thales und den Apolloniuskreisen führt die Reise über Steiner'sche Kreisketten bis in die Welt der Kegelschnitte. Dabei werden verborgene Zusammenhänge aufgedeckt und Perlen der Elementargeometrie präsentiert. Hierbei werden Sie durch harmonische Verhältnisse geleitet, welche eine zentrale Rolle spielen und sich wie ein roter Faden durch das ganze Buch ziehen. Einerseits ist dieses Buch für alle Liebhaberinnen und Liebhaber der Geometrie geschrieben, andererseits ist es durch die leicht zugängliche Theorie und die kurzen Beweise besonders auch für Schülerinnen und Schüler der Sekundarstufe sowie Lehramtsstudierende geeignet. Die Autoren Lorenz Halbeisen, Departement Mathematik, ETH Zürich, Schweiz Norbert Hungerbühler, Departement Mathematik, ETH Zürich, Schweiz Juan Läuchli, Fachschaft Mathematik, Kantonsschule Frauenfeld, Schweiz.
Choose an application
The Eurographics Symposium on Geometry Processing (SGP) is the premier venue for disseminating new research ideas and cutting-edge results in geometry processing. In this research area, concepts from mathematics, computer science, and engineering are studied and applied to offer new insights and design efficient algorithms for acquisition, modeling, analysis, manipulation, simulation, and transmission of complex 3D models.
Choose an application
3264, the mathematical solution to a question concerning geometric figures.
Choose an application
This volume grew out of two Simons Symposia on "Nonarchimedean and tropical geometry" which took place on the island of St. John in April 2013 and in Puerto Rico in February 2015. Each meeting gathered a small group of experts working near the interface between tropical geometry and nonarchimedean analytic spaces for a series of inspiring and provocative lectures on cutting edge research, interspersed with lively discussions and collaborative work in small groups. The articles collected here, which include high-level surveys as well as original research, mirror the main themes of the two Symposia. Topics covered in this volume include: Differential forms and currents, and solutions of Monge–Ampère type differential equations on Berkovich spaces and their skeletons; The homotopy types of nonarchimedean analytifications; The existence of "faithful tropicalizations" which encode the topology and geometry of analytifications; Relations between nonarchimedean analytic spaces and algebraic geometry, including logarithmic schemes, birational geometry, and the geometry of algebraic curves; Extended notions of tropical varieties which relate to Huber's theory of adic spaces analogously to the way that usual tropical varieties relate to Berkovich spaces; and Relations between nonarchimedean geometry and combinatorics, including deep and fascinating connections between matroid theory, tropical geometry, and Hodge theory.
Mathematics. --- Algebraic geometry. --- Algebraic Geometry. --- Geometry --- Geometry, algebraic. --- Algebraic geometry
Choose an application
"This volume contains contributions by the main participants of the 4th International Colloquium on Differential Geometry and its Related Fields (ICDG2014). These articles cover recent developments and are devoted mainly to the study of some geometric structures on manifolds and graphs. Readers will find a broad overview of differential geometry and its relationship to other fields in mathematics and physics."--
Choose an application
Choose an application
This book can form the basis of a second course in algebraic geometry. As motivation, it takes concrete questions from enumerative geometry and intersection theory, and provides intuition and technique, so that the student develops the ability to solve geometric problems. The authors explain key ideas, including rational equivalence, Chow rings, Schubert calculus and Chern classes, and readers will appreciate the abundant examples, many provided as exercises with solutions available online. Intersection is concerned with the enumeration of solutions of systems of polynomial equations in several variables. It has been an active area of mathematics since the work of Leibniz. Chasles' nineteenth-century calculation that there are 3264 smooth conic plane curves tangent to five given general conics was an important landmark, and was the inspiration behind the title of this book. Such computations were motivation for Poincaré's development of topology, and for many subsequent theories, so that intersection theory is now a central topic of modern mathematics.
Choose an application
Choose an application
This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to cartography. Evolutes, involutes and cycloids are introduced through Christiaan Huygens' fascinating story: in attempting to solve the famous longitude problem with a mathematically-improved pendulum clock, he invented mathematics that would later be applied to optics and gears. Clairaut’s Theorem is presented as a conservation law for angular momentum. Green’s Theorem makes possible a drafting tool called a planimeter. Foucault’s Pendulum helps one visualize a parallel vector field along a latitude of the earth. Even better, a south-pointing chariot helps one visualize a parallel vector field along any curve in any surface. In truth, the most profound application of differential geometry is to modern physics, which is beyond the scope of this book. The GPS in any car wouldn’t work without general relativity, formalized through the language of differential geometry. Throughout this book, applications, metaphors and visualizations are tools that motivate and clarify the rigorous mathematical content, but never replace it. .
Mathematics. --- Differential geometry. --- Differential Geometry. --- Differential geometry --- Math --- Global differential geometry. --- Geometry, Differential --- Geometry, Differential.
Choose an application
Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups. Important revisions to the third edition include: a substantial addition of unique and enriching exercises scattered throughout the text; inclusion of an increased number of coordinate calculations of connection and curvature; addition of general formulas for curvature on Lie Groups and submersions; integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger; incorporation of several recent results about manifolds with positive curvature; presentation of a new simplifying approach to the Bochner technique for tensors with application to bound topological quantities with general lower curvature bounds. From reviews of the first edition: "The book can be highly recommended to all mathematicians who want to get a more profound idea about the most interesting achievements in Riemannian geometry. It is one of the few comprehensive sources of this type." ―Bernd Wegner, ZbMATH.
Geometry --- Mathematics --- Physical Sciences & Mathematics --- Global differential geometry. --- Differential Geometry. --- Geometry, Differential --- Differential geometry. --- Differential geometry
Listing 1 - 10 of 347 | << page >> |
Sort by
|