Narrow your search

Library

ULiège (2)

KU Leuven (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

UGent (1)

ULB (1)

VIVES (1)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2016 (2)

Listing 1 - 2 of 2
Sort by

Book
Sheaves and functions modulo p : lectures on the Woods Hole trace formula
Authors: ---
ISBN: 1316570800 1316480682 1316572781 1316573117 1316574431 1316573443 1316575098 Year: 2016 Publisher: Cambridge : Cambridge University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Woods Hole trace formula is a Lefschetz fixed-point theorem for coherent cohomology on algebraic varieties. It leads to a version of the sheaves-functions dictionary of Deligne, relating characteristic-p-valued functions on the rational points of varieties over finite fields to coherent modules equipped with a Frobenius structure. This book begins with a short introduction to the homological theory of crystals of Böckle and Pink with the aim of introducing the sheaves-functions dictionary as quickly as possible, illustrated with elementary examples and classical applications. Subsequently, the theory and results are expanded to include infinite coefficients, L-functions, and applications to special values of Goss L-functions and zeta functions. Based on lectures given at the Morningside Center in Beijing in 2013, this book serves as both an introduction to the Woods Hole trace formula and the sheaves-functions dictionary, and to some advanced applications on characteristic p zeta values.


Book
Rigid cohomology over Laurent series fields
Authors: ---
ISBN: 3319309501 331930951X Year: 2016 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le Stum's overconvergent site. Applications of this new theory to arithmetic questions, such as l-independence and the weight monodromy conjecture, are also discussed. The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields. Rigid Cohomology over Laurent Series Fields will provide a useful tool for anyone interested in the arithmetic of varieties over local fields of positive characteristic. Appendices on important background material such as rigid cohomology and adic spaces make it as self-contained as possible, and an ideal starting point for graduate students looking to explore aspects of the classical theory of rigid cohomology and with an eye towards future research in the subject.

Listing 1 - 2 of 2
Sort by