Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Learn how to use Spark to process big data at speed and scale for sharper analytics. Put the principles into practice for faster, slicker big data projects. About This Book A quick way to get started with Spark ? and reap the rewards From analytics to engineering your big data architecture, we've got it covered Bring your Scala and Java knowledge ? and put it to work on new and exciting problems Who This Book Is For This book is for developers with little to no knowledge of Spark, but with a background in Scala/Java programming. It's recommended that you have experience in dealing and working with big data and a strong interest in data science. What You Will Learn Install and set up Spark in your cluster Prototype distributed applications with Spark's interactive shell Perform data wrangling using the new DataFrame APIs Get to know the different ways to interact with Spark's distributed representation of data (RDDs) Query Spark with a SQL-like query syntax See how Spark works with big data Implement machine learning systems with highly scalable algorithms Use R, the popular statistical language, to work with Spark Apply interesting graph algorithms and graph processing with GraphX In Detail When people want a way to process big data at speed, Spark is invariably the solution. With its ease of development (in comparison to the relative complexity of Hadoop), it's unsurprising that it's becoming popular with data analysts and engineers everywhere. Beginning with the fundamentals, we'll show you how to get set up with Spark with minimum fuss. You'll then get to grips with some simple APIs before investigating machine learning and graph processing ? throughout we'll make sure you know exactly how to apply your knowledge. You will also learn how to use the Spark shell, how to load data before finding out how to build and run your own Spark applications. Discover how to manipulate your RDD and get stuck into a range of DataFrame APIs. As if that's not enough, you'll also learn some useful Machine Learning algorithms with the help of Spark MLlib and integrating Spark with R. We'll also make sure you're confident and prepared for graph processing, as you learn more about the GraphX API. Style and approach This book is a basic, step-by-step tutorial that will help you take advantage of all that Spark has to offer.
Choose an application
A practical guide to obtaining, transforming, exploring, and analyzing data using Python, MongoDB, and Apache Spark About This Book Learn to use various data analysis tools and algorithms to classify, cluster, visualize, simulate, and forecast your data Apply Machine Learning algorithms to different kinds of data such as social networks, time series, and images A hands-on guide to understanding the nature of data and how to turn it into insight Who This Book Is For This book is for developers who want to implement data analysis and data-driven algorithms in a practical way. It is also suitable for those without a background in data analysis or data processing. Basic knowledge of Python programming, statistics, and linear algebra is assumed. What You Will Learn Acquire, format, and visualize your data Build an image-similarity search engine Generate meaningful visualizations anyone can understand Get started with analyzing social network graphs Find out how to implement sentiment text analysis Install data analysis tools such as Pandas, MongoDB, and Apache Spark Get to grips with Apache Spark Implement machine learning algorithms such as classification or forecasting In Detail Beyond buzzwords like Big Data or Data Science, there are a great opportunities to innovate in many businesses using data analysis to get data-driven products. Data analysis involves asking many questions about data in order to discover insights and generate value for a product or a service. This book explains the basic data algorithms without the theoretical jargon, and you'll get hands-on turning data into insights using machine learning techniques. We will perform data-driven innovation processing for several types of data such as text, Images, social network graphs, documents, and time series, showing you how to implement large data processing with MongoDB and Apache Spark. Style and approach This is a hands-on guide to data analysis and data processing. The concrete examples are explained with simple code and accessible data.
System design. --- Design, System --- Systems design --- Electronic data processing --- System analysis --- MongoDB. --- Spark (Electronic resource : Apache Software Foundation) --- Apache Spark (Electronic resource : Apache Software Foundation) --- 766.022 --- informatiedesign --- grafisch design --- grafische vormgeving --- grafisch ontwerp
Choose an application
Develop a range of cutting-edge machine learning projects with Apache Spark using this actionable guide About This Book Customize Apache Spark and R to fit your analytical needs in customer research, fraud detection, risk analytics, and recommendation engine development Develop a set of practical Machine Learning applications that can be implemented in real-life projects A comprehensive, project-based guide to improve and refine your predictive models for practical implementation Who This Book Is For If you are a data scientist, a data analyst, or an R and SPSS user with a good understanding of machine learning concepts, algorithms, and techniques, then this is the book for you. Some basic understanding of Spark and its core elements and application is required. What You Will Learn Set up Apache Spark for machine learning and discover its impressive processing power Combine Spark and R to unlock detailed business insights essential for decision making Build machine learning systems with Spark that can detect fraud and analyze financial risks Build predictive models focusing on customer scoring and service ranking Build a recommendation systems using SPSS on Apache Spark Tackle parallel computing and find out how it can support your machine learning projects Turn open data and communication data into actionable insights by making use of various forms of machine learning In Detail There's a reason why Apache Spark has become one of the most popular tools in Machine Learning ? its ability to handle huge datasets at an impressive speed means you can be much more responsive to the data at your disposal. This book shows you Spark at its very best, demonstrating how to connect it with R and unlock maximum value not only from the tool but also from your data. Packed with a range of project "blueprints" that demonstrate some of the most interesting challenges that Spark can help you tackle, you'll find out how to use Spark notebooks and access, clean, and join different datasets before putting your knowledge into practice with some real-world projects, in which you will see how Spark Machine Learning can help you with everything from fraud detection to analyzing customer attrition. You'll also find out how to build a recommendation engine using Spark's parallel computing powers. Style and approach This book offers a step-by-step approach to setting up Apache Spark, and use other analytical tools with it to process Big Data and build machine learning pr...
Machine learning. --- Big data. --- Information retrieval. --- Data retrieval --- Data storage --- Discovery, Information --- Information discovery --- Information storage and retrieval --- Retrieval of information --- Documentation --- Information science --- Information storage and retrieval systems --- Data sets, Large --- Large data sets --- Data sets --- Learning, Machine --- Artificial intelligence --- Machine theory --- Spark (Electronic resource : Apache Software Foundation) --- Apache Spark (Electronic resource : Apache Software Foundation)
Choose an application
Integrate full-stack open-source fast data pipeline architecture and choose the correct technology—Spark, Mesos, Akka, Cassandra, and Kafka (SMACK)—in every layer. Fast data is becoming a requirement for many enterprises. So far, however, the focus has largely been on collecting, aggregating, and crunching large data sets in a timely manner. In many cases organizations need more than one paradigm to perform efficient analyses. Big Data SMACK explains each technology and, more importantly, how to integrate them. It provides detailed coverage of the practical benefits of these technologies and incorporates real-world examples. The book focuses on the problems and scenarios solved by the architecture, as well as the solutions provided by each technology. This book covers the five main concepts of data pipeline architecture and how to integrate, replace, and reinforce every layer: The engine: Apache Spark The container: Apache Mesos The model: Akka< The storage: Apache Cassandra The broker: Apache Kafka.
Computer science. --- Data structures (Computer science). --- Database management. --- Computer Science. --- Big Data. --- Database Management. --- Data Structures. --- Big data. --- Data sets, Large --- Large data sets --- Data base management --- Data services (Database management) --- Database management services --- DBMS (Computer science) --- Generalized data management systems --- Services, Database management --- Systems, Database management --- Systems, Generalized database management --- Electronic data processing --- Information structures (Computer science) --- Structures, Data (Computer science) --- Structures, Information (Computer science) --- File organization (Computer science) --- Abstract data types (Computer science) --- Informatics --- Science --- Spark (Electronic resource : Apache Software Foundation) --- Apache Mesos (Electronic resource) --- Akka (Electronic resource) --- Apache Cassandra. --- Apache Kafka. --- Cassandra (Electronic resource) --- Apache Spark (Electronic resource : Apache Software Foundation) --- Mesos (Electronic resource) --- Data sets --- Data structures (Computer scienc.
Choose an application
Learn the right cutting-edge skills and knowledge to leverage Spark Streaming to implement a wide array of real-time, streaming applications. This book walks you through end-to-end real-time application development using real-world applications, data, and code. Taking an application-first approach, each chapter introduces use cases from a specific industry and uses publicly available datasets from that domain to unravel the intricacies of production-grade design and implementation. The domains covered in Pro Spark Streaming include social media, the sharing economy, finance, online advertising, telecommunication, and IoT. In the last few years, Spark has become synonymous with big data processing. DStreams enhance the underlying Spark processing engine to support streaming analysis with a novel micro-batch processing model. Pro Spark Streaming by Zubair Nabi will enable you to become a specialist of latency sensitive applications by leveraging the key features of DStreams, micro-batch processing, and functional programming. To this end, the book includes ready-to-deploy examples and actual code. Pro Spark Streaming will act as the bible of Spark Streaming. What You'll Learn Discover Spark Streaming application development and best practices Work with the low-level details of discretized streams Optimize production-grade deployments of Spark Streaming via configuration recipes and instrumentation using Graphite, collectd, and Nagios Ingest data from disparate sources including MQTT, Flume, Kafka, Twitter, and a custom HTTP receiver Integrate and couple with HBase, Cassandra, and Redis Take advantage of design patterns for side-effects and maintaining state across the Spark Streaming micro-batch model Implement real-time and scalable ETL using data frames, SparkSQL, Hive, and SparkR Use streaming machine learning, predictive analytics, and recommendations Mesh batch processing with stream processing via the Lambda architecture Who This Book Is For Data scientists, big data experts, BI analysts, and data architects.
Computer science. --- Data mining. --- Application software. --- Computer Science. --- Computer Appl. in Administrative Data Processing. --- Data Mining and Knowledge Discovery. --- Streaming technology (Telecommunications) --- Big data. --- Spark (Electronic resource : Apache Software Foundation) --- Data sets, Large --- Large data sets --- Streamed media --- Streaming media --- Streaming resources --- Apache Spark (Electronic resource : Apache Software Foundation) --- Application computer programs --- Application computer software --- Applications software --- Apps (Computer software) --- Computer software --- Algorithmic knowledge discovery --- Factual data analysis --- KDD (Information retrieval) --- Knowledge discovery in data --- Knowledge discovery in databases --- Mining, Data --- Database searching --- Informatics --- Science --- Data transmission systems --- Multimedia systems --- Data sets --- Information systems. --- Big Data.
Listing 1 - 5 of 5 |
Sort by
|