Narrow your search

Library

KU Leuven (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

UGent (3)

ULiège (3)

VIVES (3)

ULB (2)

LUCA School of Arts (1)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2016 (3)

Listing 1 - 3 of 3
Sort by

Book
Fixed point theory and graph theory : foundations and integrative approaches
Authors: ---
ISBN: 9780128043653 0128043652 0128042958 9780128042953 Year: 2016 Publisher: Amsterdam, [Netherlands] : Academic Press,


Book
Topological fixed point theory for singlevalued and multivalued mappings and applications
Authors: ---
ISBN: 3319319477 3319319485 Year: 2016 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This is a monograph covering topological fixed point theory for several classes of single and multivalued maps. The authors begin by presenting basic notions in locally convex topological vector spaces. Special attention is then devoted to weak compactness, in particular to the theorems of Eberlein–Šmulian, Grothendick and Dunford–Pettis. Leray–Schauder alternatives and eigenvalue problems for decomposable single-valued nonlinear weakly compact operators in Dunford–Pettis spaces are considered, in addition to some variants of Schauder, Krasnoselskii, Sadovskii, and Leray–Schauder type fixed point theorems for different classes of weakly sequentially continuous operators on general Banach spaces. The authors then proceed with an examination of Sadovskii, Furi–Pera, and Krasnoselskii fixed point theorems and nonlinear Leray–Schauder alternatives in the framework of weak topologies and involving multivalued mappings with weakly sequentially closed graph. These results are formulated in terms of axiomatic measures of weak noncompactness. The authors continue to present some fixed point theorems in a nonempty closed convex of any Banach algebras or Banach algebras satisfying a sequential condition (P) for the sum and the product of nonlinear weakly sequentially continuous operators, and illustrate the theory by considering functional integral and partial differential equations. The existence of fixed points, nonlinear Leray–Schauder alternatives for different classes of nonlinear (ws)-compact operators (weakly condensing, 1-set weakly contractive, strictly quasi-bounded) defined on an unbounded closed convex subset of a Banach space are also discussed. The authors also examine the existence of nonlinear eigenvalues and eigenvectors, as well as the surjectivity of quasibounded operators. Finally, some approximate fixed point theorems for multivalued mappings defined on Banach spaces. Weak and strong topologies play a role here and both bounded and unbounded regions are considered. The authors explicate a method developed to indicate how to use approximate fixed point theorems to prove the existence of approximate Nash equilibria for non-cooperative games. Fixed point theory is a powerful and fruitful tool in modern mathematics and may be considered as a core subject in nonlinear analysis. In the last 50 years, fixed point theory has been a flourishing area of research. As such, the monograph begins with an overview of these developments before gravitating towards topics selected to reflect the particular interests of the authors. .


Book
Approximate solutions of common fixed-point problems
Author:
ISBN: 3319332538 3319332554 Year: 2016 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents results on the convergence behavior of algorithms which are known as vital tools for solving convex feasibility problems and common fixed point problems. The main goal for us in dealing with a known computational error is to find what approximate solution can be obtained and how many iterates one needs to find it. According to know results, these algorithms should converge to a solution. In this exposition, these algorithms are studied, taking into account computational errors which remain consistent in practice. In this case the convergence to a solution does not take place. We show that our algorithms generate a good approximate solution if computational errors are bounded from above by a small positive constant. Beginning with an introduction, this monograph moves on to study: · dynamic string-averaging methods for common fixed point problems in a Hilbert space · dynamic string methods for common fixed point problems in a metric space · dynamic string-averaging version of the proximal algorithm · common fixed point problems in metric spaces · common fixed point problems in the spaces with distances of the Bregman type · a proximal algorithm for finding a common zero of a family of maximal monotone operators · subgradient projections algorithms for convex feasibility problems in Hilbert spaces .

Listing 1 - 3 of 3
Sort by