Listing 1 - 6 of 6 |
Sort by
|
Choose an application
The present numerical study aims at clarifying the influence of electromagnetic and thermal coupling of neighboring fluid domains on magneto-convective flows in geometries relevant for the helium cooled fusion blanket concept.
Heat --- Magnetohydrodynamics. --- Transmission.
Choose an application
Magnetohydrodynamics of the Sun is a completely new up-to-date rewrite from scratch of the 1982 book Solar Magnetohydrodynamics, taking account of enormous advances in understanding since that date. It describes the subtle and complex interaction between the Sun's plasma atmosphere and its magnetic field, which is responsible for many fascinating dynamic phenomena. Chapters cover the generation of the Sun's magnetic field by dynamo action, magnetoconvection and the nature of photospheric flux tubes such as sunspots, the heating of the outer atmosphere by waves or reconnection, the structure of prominences, the nature of eruptive instability and magnetic reconnection in solar flares and coronal mass ejections, and the acceleration of the solar wind by reconnection or wave-turbulence. It is essential reading for graduate students and researchers in solar physics and related fields of astronomy, plasma physics and fluid dynamics. Problem sets and other resources are available at www.cambridge.org/9780521854719.
Solar activity. --- Magnetohydrodynamics. --- Solar magnetic fields. --- Astrophysics. --- Sun.
Choose an application
The last thirty years have seen great leaps forward in the subject of magnetoconvection. Computational techniques can now explain exotic nonlinear behaviour, transition to chaos and the formation of structures that can be observed on the surface of the Sun. Here, two leading experts present the current state of knowledge of the subject. They provide a mathematical and numerical treatment of the interactions between electrically conducting fluids and magnetic fields that lead to the complex structures and rich behaviour observed on the Sun and other stars, as well as in the interiors of planets like the Earth. The authors' combined analytical and computational approach provides a model for the study of a wide range of related problems. The discussion includes bifurcation theory, chaotic behaviour, pattern formation in two and three dimensions, and applications to geomagnetism and to the properties of sunspots and other features at the solar surface.
Magnetic fields. --- Solar magnetic fields. --- Geomagnetism. --- Magnetohydrodynamics. --- Relativistic fluid dynamics.
Choose an application
Comprehensive, self-contained, and clearly written, this successor to Ideal Magnetohydrodynamics (1987) describes the macroscopic equilibrium and stability of high temperature plasmas - the basic fuel for the development of fusion power. Now fully updated, this book discusses the underlying physical assumptions for three basic MHD models: ideal, kinetic, and double-adiabatic MHD. Included are detailed analyses of MHD equilibrium and stability, with a particular focus on three key configurations at the cutting-edge of fusion research: the tokamak, stellarator, and reversed field pinch. Other new topics include continuum damping, MHD stability comparison theorems, neoclassical transport in stellarators, and how quasi-omnigeneity, quasi-symmetry, and quasi-isodynamic constraints impact the design of optimized stellarators. Including full derivations of almost every important result, in-depth physical explanations throughout, and a large number of problem sets to help master the material, this is an exceptional resource for graduate students and researchers in plasma and fusion physics.
Magnetohydrodynamics --- Fluid dynamics --- Turbulence --- High temperature plasmas. --- Plasma (Ionized gases) --- Fusion reactors. --- Mathematical models.
Choose an application
This complete introduction to the use of modern ray tracing techniques in plasma physics describes the powerful mathematical methods generally applicable to vector wave equations in non-uniform media, and clearly demonstrates the application of these methods to simplify and solve important problems in plasma wave theory. Key analytical concepts are carefully introduced as needed, encouraging the development of a visual intuition for the underlying methodology, with more advanced mathematical concepts succinctly explained in the appendices, and supporting Matlab and Raycon code available online. Covering variational principles, covariant formulations, caustics, tunnelling, mode conversion, weak dissipation, wave emission from coherent sources, incoherent wave fields, and collective wave absorption and emission, all within an accessible framework using standard plasma physics notation, this is an invaluable resource for graduate students and researchers in plasma physics.
Plasma waves. --- Ray tracing algorithms. --- Phase space (Statistical physics) --- Space, Phase (Statistical physics) --- Generalized spaces --- Interactive ray tracing --- Computer animation --- Computer algorithms --- Geometrical optics --- Optical data processing --- Plasma sound waves --- Acoustic surface waves --- Magnetohydrodynamics --- Plasma (Ionized gases) --- Waves
Choose an application
"This book provides readers with the skills they need to write computer codes that simulate convection, internal gravity waves, and magnetic field generation in the interiors and atmospheres of rotating planets and stars. Using a teaching method perfected in the classroom, Gary Glatzmaier begins by offering a step-by-step guide on how to design codes for simulating nonlinear time-dependent thermal convection in a two-dimensional box using Fourier expansions in the horizontal direction and finite differences in the vertical direction. He then describes how to implement more efficient and accurate numerical methods and more realistic geometries in two and three dimensions. In the third part of the book, Glatzmaier demonstrates how to incorporate more sophisticated physics, including the effects of magnetic field, density stratification, and rotation.Featuring numerous exercises throughout, this is an ideal textbook for students and an essential resource for researchers. Describes how to create codes that simulate the internal dynamics of planets and stars Builds on basic concepts and simple methods Shows how to improve the efficiency and accuracy of the numerical methods Describes more relevant geometries and boundary conditions Demonstrates how to incorporate more sophisticated physics "--
Convection (Astrophysics) --- Planets --- Stars --- Astrophysics --- Heat --- Atmospheres of stars --- Stellar atmospheres --- Atmospheres of planets --- Planetary atmospheres --- Computer simulation. --- Mathematical models. --- Atmospheres. --- Convection --- 2.5D spherical-shell. --- 3D cartesian box. --- 3D spherical-shell. --- Adams-Bashforth time integration scheme. --- Boussinesq approximation. --- ChebyshevІourier method. --- CrankЎicolson scheme. --- Fourier expansions. --- Fourier mode. --- Fourier transforms. --- Galerkin method. --- Nusselt number. --- Poisson equation. --- Prandtl number. --- Rayleigh number. --- RayleighЂnard convection. --- Reynolds number. --- RungeЋutta scheme. --- advection. --- anelastic approximation. --- anelastic model. --- arbitrary background field. --- aspect ratio. --- boundary conditions. --- boundary layers. --- cartesian box geometry. --- computer analysis. --- computer code. --- computer graphics. --- computer simulations. --- conservation equations. --- convection. --- coordinate mapping. --- critical Rayleigh number. --- density stratification. --- diffusion. --- dispersion relation. --- double-diffusive convection. --- energy. --- entropy. --- finite-amplitude simulations. --- finite-difference method. --- fluid dynamics. --- fluid flow. --- fluid velocity. --- horizontal background field. --- infinite Prandtl number. --- internal gravity waves. --- kinetic energy spectrum. --- linear code. --- linear dispersion relation. --- linear equations. --- linear model. --- linear stability analysis. --- linear stability problem. --- magnetic field generation. --- magnetic field. --- magneto-gravity waves. --- magnetoconvection. --- magnetohydrodynamic equations. --- magnetohydrodynamics. --- mantle convection. --- marginal stability. --- mass. --- momentum. --- nonlinear code. --- nonlinear convection. --- nonlinear evolution. --- nonlinear simulations. --- nonlinear terms. --- nonuniform grid. --- numerical code. --- numerical method. --- numerical model. --- oscillating instability. --- parallel code. --- parallel processing. --- postprocessing code. --- predictor-corrector scheme. --- pressure. --- rotation. --- salt-fingering instability. --- semi-implicit scheme. --- semiconvection instability. --- spatial discretization. --- spatial resolution. --- spectral method. --- spectral space. --- spherical harmonic expansions. --- staircase profile. --- temperature profile. --- temperature. --- thermal convection. --- thermal diffusion. --- thermal stratification. --- time integration schemes. --- vorticity-streamfunction formulation. --- vorticity. --- wave energy.
Listing 1 - 6 of 6 |
Sort by
|