Narrow your search

Library

Odisee (10)

Thomas More Kempen (10)

Thomas More Mechelen (10)

UCLL (10)

VIVES (10)

KU Leuven (8)

ULB (8)

ULiège (8)

LUCA School of Arts (2)

VUB (2)

More...

Resource type

book (11)


Language

English (11)


Year
From To Submit

2014 (11)

Listing 1 - 10 of 11 << page
of 2
>>
Sort by

Book
Superconductivity
Authors: --- --- ---
ISBN: 0124166105 0124095097 1306992834 9780124095090 9780124166103 Year: 2014 Publisher: Amsterdam Elsevier Science

Loading...
Export citation

Choose an application

Bookmark

Abstract

Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edi


Book
Selected papers of Lev P. Gor'kov
Author:
ISBN: 981436696X 9789814366960 9789814366953 9814366951 Year: 2014 Publisher: Hackensack, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

The author of this unique volume, Lev P Gor''kov is internationally renowned for his seminal contribution in the fundamentals of the Theory of Superconductivity, Theory of Metals, the field of Quantum Statistical Physics, and more generally, Organic Metals and the like. Each reprints'' group is preceded by the author''s introductions and commentaries clarifying the formulation of a problem, summarizing the essence of the results and placing them in the context of recent developments. The author belongs to the last generation of scientists who were the direct disciples of the legendary Russian


Book
Annual review of cold atoms and molecules.
Authors: --- --- ---
ISBN: 9814590177 9789814590174 9789814590167 9814590169 0199951047 9780199951048 Year: 2014 Publisher: Hackensack, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

The aim of this book is to present review articles describing the latest theoretical and experimental developments in the field of cold atoms and molecules. Our hope is that this series will promote research by both highlighting recent breakthroughs and by outlining some of the most promising research directions in the field. Sample Chapter(s). Chapter 1: Degenerate Quantum Gases of Strontium (918 KB). Contents: Degenerate Quantum Gases of Strontium; Fermi Gases with Synthetic Spin-Orbit Coupling; The Mott Transition in a Bose Gas Measured Through Time of Flight; One-dimensional Photonic Band


Book
Electricity and Magnetism : New Formulation by Introduction of Superconductivity
Authors: ---
ISBN: 4431545255 4431545263 Year: 2014 Publisher: Tokyo : Springer Japan : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The author introduces the concept that superconductivity can establish a perfect formalism of electricity and magnetism. The correspondence of conductors that exhibit perfect electrostatic shielding (E=0) in the static condition and superconductors that show perfect diamagnetism (B=0) is given to help readers understand the relationship between electricity and magnetism. Another helpful aspect with the introduction of the superconductivity feature perfect diamagnetism is that the correspondence in the development of the expression of magnetic energy and electric energy is clearly shown. Additionally, the basic mathematical operation and proofs are shown in an appendix, and there is full use of examples and exercises in each chapter with thorough answers.


Book
Flux Pinning in Superconductors
Author:
ISBN: 3642453112 3642453120 Year: 2014 Volume: 178 Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of superconductor, specimen size and electric field strength. Recent developments of critical current properties in various high-Tc superconductors and MgB2 are introduced. Other topics are: singularity in the case of transport current in a parallel magnetic field such as deviation from the Josephson relation, reversible flux motion inside pinning potentials which causes deviation from the critical state model prediction, the concept of the minimization of energy dissipation in the flux pinning phenomena which gives the basis for the critical state model, etc. Significant reduction in the AC loss in AC wires with very fine filaments originates from the reversible flux motion which is dominant in the two-dimensional pinning. The concept of minimum energy dissipation explains also the behavior of flux bundle size which determines the irreversibility line under the flux creep. The new edition has been thoroughly updated, with new sections on the progress in enhancing the critical current density in high temperature superconductors by introduction of artificial pinning centers, the effect of packing density on the critical current density and irreversibility field in MgB2 and derivation of the force-balance equation from the minimization of the free energy including the pinning energy.


Book
Frontiers and Challenges in Warm Dense Matter
Authors: --- --- ---
ISBN: 3319049127 Year: 2014 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent Light Source (LCLS). Warm Dense Matter is also ubiquitous in planetary science and astrophysics, particularly with respect to unresolved questions concerning the structure and age of the gas giants, the nature of exosolar planets, and the cosmochronology of white dwarf stars. In this book we explore established and promising approaches to the modeling of WDM, foundational issues concerning the correct theoretical description of WDM, and the challenging practical issues of numerically modeling strongly coupled systems with many degrees of freedom.


Book
Probing Correlated Quantum Many-Body Systems at the Single-Particle Level
Author:
ISBN: 3319057537 3319057529 Year: 2014 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

How much knowledge can we gain about a physical system and to what degree can we control it? In quantum optical systems, such as ion traps or neutral atoms in cavities, single particles and their correlations can now be probed in a way that is fundamentally limited only by the laws of quantum mechanics. In contrast, quantum many-body systems pose entirely new challenges due to the enormous number of microscopic parameters and their small length- and short time-scales. This thesis describes a new approach to probing quantum many-body systems at the level of individual particles: Using high-resolution, single-particle-resolved imaging and manipulation of strongly correlated atoms, single atoms can be detected and manipulated due to the large length and time-scales and the precise control of internal degrees of freedom. Such techniques lay stepping stones for the experimental exploration of new quantum many-body phenomena and applications thereof, such as quantum simulation and quantum information, through the design of systems at the microscopic scale and the measurement of previously inaccessible observables.


Book
Spin Spirals and Charge Textures in Transition-Metal-Oxide Heterostructures
Author:
ISBN: 3319070703 331907069X Year: 2014 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This thesis presents the results of resonant and non-resonant x-ray scattering experiments demonstrating the control of collective ordering phenomena in epitaxial nickel-oxide and copper-oxide based superlattices. Three outstanding results are reported: (1) LaNiO3-LaAlO3 superlattices with fewer than three consecutive NiO2 layers exhibit a novel spiral spin density wave, whereas superlattices with thicker nickel-oxide layer stacks remain paramagnetic. The magnetic transition is thus determined by the dimensionality of the electron system. The polarization plane of the spin density wave can be tuned by epitaxial strain and spatial confinement of the conduction electrons. (2) Further experiments on the same system revealed an unusual structural phase transition controlled by the overall thickness of the superlattices. The transition between uniform and twin-domain states is confined to the nickelate layers and leaves the aluminate layers unaffected. (3) Superlattices based on the high-temperature superconductor YBa2Cu3O7 exhibit an incommensurate charge density wave order that is stabilized by heterointerfaces. These results suggest that interfaces can serve as a powerful tool to manipulate the interplay between spin order, charge order, and superconductivity in cuprates and other transition metal oxides.


Book
Superconductivity in Graphene and Carbon Nanotubes : Proximity effect and nonlocal transport
Author:
ISSN: 21905061 ISBN: 331901109X 3319011103 Year: 2014 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The unique electronic band structure of graphene gives rise to remarkable properties when in contact with a superconducting electrode. In this thesis two main aspects of these junctions are analyzed: the induced superconducting proximity effect and the non-local transport properties in multi-terminal devices. For this purpose specific models are developed and studied using Green function techniques, which allow us to take into account the detailed microscopic structure of the graphene-superconductor interface. It is shown that these junctions are characterized by the appearance of bound states at subgap energies which are localized at the interface region. Furthermore it is shown that graphene-supercondutor-graphene junctions can be used to favor the splitting of Cooper pairs for the generation of non-locally entangled electron pairs. Finally, using similar techniques the thesis analyzes the transport properties of carbon nanotube devices coupled with superconducting electrodes and in graphene superlattices.


Book
Quantum Theory of Many-Body Systems : Techniques and Applications
Author:
ISBN: 3319070487 3319070495 9783319070490 Year: 2014 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This text presents a self-contained treatment of the physics of many-body systems from the point of view of condensed matter. The approach, quite traditionally, uses the mathematical formalism of quasiparticles and Green’s functions. In particular, it covers all the important diagram techniques for normal and superconducting systems, including the zero-temperature perturbation theory and the Matsubara, Keldysh and Nambu-Gor'kov formalism, as well as an introduction to Feynman path integrals. This new edition contains an introduction to the methods of theory of one-dimensional systems (bosonization and conformal field theory) and their applications to many-body problems.   Intended for graduate students in physics and related fields, the aim is not to be exhaustive, but to present enough detail to enable the student to follow the current research literature, or to apply the techniques to new problems. Many of the examples are drawn from mesoscopic physics, which deals with systems small enough that quantum coherence is maintained throughout their volume, and which therefore provides an ideal testing ground for many-body theories.

Listing 1 - 10 of 11 << page
of 2
>>
Sort by