Listing 1 - 8 of 8 |
Sort by
|
Choose an application
This book is an introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, resides in the very high mathematical difficulty of even the simplest physical case. Within an ordinary graduate course in physics there is insufficient time to cover the theory of Hilbert spaces and operators, as well as distribution theory, with sufficient mathematical rigor. Compromises must be found between full rigor and practical use of the instruments. The book is based on the author's lessons on functional analysis for graduate students in physics. It will equip the reader to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. With respect to the original lectures, the mathematical flavor in all subjects has been enriched. Moreover, a brief introduction to topological groups has been added in addition to exercises and solved problems throughout the text. With these improvements, the book can be used in upper undergraduate and lower graduate courses, both in Physics and in Mathematics.
Hilbert space --- Hilbert, Espaces de --- Mathematical Methods in Physics. --- Algebraic Topology. --- Spaces, Metric --- Physics. --- Functional analysis. --- Algebraic topology. --- Functional Analysis. --- Hilbert space. --- Metric spaces. --- Topological spaces. --- Generalized spaces --- Set theory --- Topology --- Spaces, Topological --- Banach spaces --- Hyperspace --- Inner product spaces --- Mathematical physics. --- Functional calculus --- Calculus of variations --- Functional equations --- Integral equations --- Physical mathematics --- Physics --- Mathematics --- Hilbert, Espaces de. --- Natural philosophy --- Philosophy, Natural --- Physical sciences --- Dynamics
Choose an application
Written by an author who was at the forefront of developments in multi-variable spectral theory during the seventies and the eighties, this guide sets out to describe in detail the spectral mapping theorem in one, several and many variables. The basic algebraic systems – semigroups, rings and linear algebras – are summarised, and then topological-algebraic systems, including Banach algebras, to set up the basic language of algebra and analysis. Spectral Mapping Theorems is written in an easy-to-read and engaging manner and will be useful for both the beginner and expert. It will be of great importance to researchers and postgraduates studying spectral theory.
Banach algebras. --- Mappings (Mathematics) --- Spectral theory (Mathematics) --- Functional analysis --- Hilbert space --- Measure theory --- Transformations (Mathematics) --- Maps (Mathematics) --- Functions --- Functions, Continuous --- Topology --- Algebras, Banach --- Banach rings --- Metric rings --- Normed rings --- Banach spaces --- Topological algebras --- Operator theory. --- Operator Theory.
Choose an application
The Dirichlet space is one of the three fundamental Hilbert spaces of holomorphic functions on the unit disk. It boasts a rich and beautiful theory, yet at the same time remains a source of challenging open problems and a subject of active mathematical research. This book is the first systematic account of the Dirichlet space, assembling results previously only found in scattered research articles, and improving upon many of the proofs. Topics treated include: the Douglas and Carleson formulas for the Dirichlet integral, reproducing kernels, boundary behaviour and capacity, zero sets and uniqueness sets, multipliers, interpolation, Carleson measures, composition operators, local Dirichlet spaces, shift-invariant subspaces, and cyclicity. Special features include a self-contained treatment of capacity, including the strong-type inequality. The book will be valuable to researchers in function theory, and with over 100 exercises it is also suitable for self-study by graduate students.
Dirichlet principle. --- Holomorphic functions. --- Functions of complex variables. --- Complex variables --- Elliptic functions --- Functions of real variables --- Functions, Holomorphic --- Functions of several complex variables --- Principle, Dirichlet --- Calculus of variations --- Hilbert space. --- Banach spaces --- Hyperspace --- Inner product spaces
Choose an application
This book focuses on the constructive and practical aspects of spectral methods. It rigorously examines the most important qualities as well as drawbacks of spectral methods in the context of numerical methods devoted to solve non-standard eigenvalue problems. In addition, the book also considers some nonlinear singularly perturbed boundary value problems along with eigenproblems obtained by their linearization around constant solutions. The book is mathematical, poising problems in their proper function spaces, but its emphasis is on algorithms and practical difficulties. The range of applications is quite large. High order eigenvalue problems are frequently beset with numerical ill conditioning problems. The book describes a wide variety of successful modifications to standard algorithms that greatly mitigate these problems. In addition, the book makes heavy use of the concept of pseudospectrum, which is highly relevant to understanding when disaster is imminent in solving eigenvalue problems. It also envisions two classes of applications, the stability of some elastic structures and the hydrodynamic stability of some parallel shear flows. This book is an ideal reference text for professionals (researchers) in applied mathematics, computational physics and engineering. It will be very useful to numerically sophisticated engineers, physicists and chemists. The book can also be used as a textbook in review courses such as numerical analysis, computational methods in various engineering branches or physics and computational methods in analysis.
Eigenvalues. --- Spectral theory (Mathematics) --- Mathematics. --- Math --- Science --- Functional analysis --- Hilbert space --- Measure theory --- Transformations (Mathematics) --- Matrices --- Computer science --- Numerical analysis. --- Differential Equations. --- Computer science. --- Computational Mathematics and Numerical Analysis. --- Numerical Analysis. --- Ordinary Differential Equations. --- Applications of Mathematics. --- Computational Science and Engineering. --- Numerical and Computational Physics, Simulation. --- Informatics --- 517.91 Differential equations --- Differential equations --- Mathematical analysis --- Computer mathematics --- Discrete mathematics --- Electronic data processing --- Mathematics --- Computer mathematics. --- Differential equations. --- Applied mathematics. --- Engineering mathematics. --- Physics. --- Natural philosophy --- Philosophy, Natural --- Physical sciences --- Dynamics --- Engineering --- Engineering analysis
Choose an application
Diffusive motion--displacement due to the cumulative effect of irregular fluctuations--has been a fundamental concept in mathematics and physics since Einstein's work on Brownian motion. It is also relevant to understanding various aspects of quantum theory. This book explains diffusive motion and its relation to both nonrelativistic quantum theory and quantum field theory. It shows how diffusive motion concepts lead to a radical reexamination of the structure of mathematical analysis. The book's inspiration is Princeton University mathematics professor Edward Nelson's influential work in probability, functional analysis, nonstandard analysis, stochastic mechanics, and logic. The book can be used as a tutorial or reference, or read for pleasure by anyone interested in the role of mathematics in science. Because of the application of diffusive motion to quantum theory, it will interest physicists as well as mathematicians. The introductory chapter describes the interrelationships between the various themes, many of which were first brought to light by Edward Nelson. In his writing and conversation, Nelson has always emphasized and relished the human aspect of mathematical endeavor. In his intellectual world, there is no sharp boundary between the mathematical, the cultural, and the spiritual. It is fitting that the final chapter provides a mathematical perspective on musical theory, one that reveals an unexpected connection with some of the book's main themes.
Mathematical physics. --- Diffusion. --- Quantum theory. --- Quantum dynamics --- Quantum mechanics --- Quantum physics --- Physics --- Mechanics --- Thermodynamics --- Gases --- Liquids --- Separation (Technology) --- Solution (Chemistry) --- Solutions, Solid --- Matter --- Packed towers --- Semiconductor doping --- Physical mathematics --- Diffusion --- Properties --- Mathematics --- Affine space. --- Algebra. --- Axiom. --- Bell's theorem. --- Brownian motion. --- Central limit theorem. --- Classical mathematics. --- Classical mechanics. --- Clifford algebra. --- Combinatorial proof. --- Commutative property. --- Constructive quantum field theory. --- Continuum hypothesis. --- David Hilbert. --- Dimension (vector space). --- Discrete mathematics. --- Distribution (mathematics). --- Eigenfunction. --- Equation. --- Euclidean space. --- Experimental mathematics. --- Fermi–Dirac statistics. --- Feynman–Kac formula. --- First-order logic. --- Fokker–Planck equation. --- Foundations of mathematics. --- Fractal dimension. --- Gaussian process. --- Girsanov theorem. --- Gödel's incompleteness theorems. --- Hilbert space. --- Hilbert's program. --- Holomorphic function. --- Infinitesimal. --- Integer. --- Internal set theory. --- Interval (mathematics). --- Limit (mathematics). --- Mathematical induction. --- Mathematical optimization. --- Mathematical proof. --- Mathematician. --- Mathematics. --- Measurable function. --- Measure (mathematics). --- Minkowski space. --- Natural number. --- Neo-Riemannian theory. --- Non-standard analysis. --- Number theory. --- Operator algebra. --- Ornstein–Uhlenbeck process. --- Orthonormal basis. --- Perturbation theory (quantum mechanics). --- Philosophy of mathematics. --- Predicate (mathematical logic). --- Probability measure. --- Probability space. --- Probability theory. --- Probability. --- Projection (linear algebra). --- Pure mathematics. --- Pythagorean theorem. --- Quantum field theory. --- Quantum fluctuation. --- Quantum gravity. --- Quantum harmonic oscillator. --- Quantum mechanics. --- Quantum system. --- Quantum teleportation. --- Random variable. --- Real number. --- Renormalization group. --- Renormalization. --- Riemann mapping theorem. --- Riemann surface. --- Riemannian geometry. --- Riemannian manifold. --- Schrödinger equation. --- Scientific notation. --- Set (mathematics). --- Sign (mathematics). --- Sobolev inequality. --- Special relativity. --- Spectral theorem. --- Spin (physics). --- Statistical mechanics. --- Stochastic calculus. --- Stochastic differential equation. --- Tensor algebra. --- Theorem. --- Theoretical physics. --- Theory. --- Turing machine. --- Variable (mathematics). --- Von Neumann algebra. --- Wiener process. --- Wightman axioms. --- Zermelo–Fraenkel set theory.
Choose an application
The theory of D-modules deals with the algebraic aspects of differential equations. These are particularly interesting on homogeneous manifolds, since the infinitesimal action of a Lie algebra consists of differential operators. Hence, it is possible to attach geometric invariants, like the support and the characteristic variety, to representations of Lie groups. By considering D-modules on flag varieties, one obtains a simple classification of all irreducible admissible representations of reductive Lie groups. On the other hand, it is natural to study the representations realized by functions on pseudo-Riemannian symmetric spaces, i.e., spherical representations. The problem is then to describe the spherical representations among all irreducible ones, and to compute their multiplicities. This is the goal of this work, achieved fairly completely at least for the discrete series representations of reductive symmetric spaces. The book provides a general introduction to the theory of D-modules on flag varieties, and it describes spherical D-modules in terms of a cohomological formula. Using microlocalization of representations, the author derives a criterion for irreducibility. The relation between multiplicities and singularities is also discussed at length.Originally published in 1990.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Differentiable manifolds. --- D-modules. --- Representations of groups. --- Lie groups. --- Groups, Lie --- Lie algebras --- Symmetric spaces --- Topological groups --- Group representation (Mathematics) --- Groups, Representation theory of --- Group theory --- Modules (Algebra) --- Differential manifolds --- Manifolds (Mathematics) --- Affine space. --- Algebraic cycle. --- Algebraic element. --- Analytic function. --- Annihilator (ring theory). --- Automorphism. --- Banach space. --- Base change. --- Big O notation. --- Bijection. --- Bilinear form. --- Borel subgroup. --- Cartan subalgebra. --- Cofibration. --- Cohomology. --- Commutative diagram. --- Commutative property. --- Commutator subgroup. --- Complexification (Lie group). --- Conjugacy class. --- Coproduct. --- Coset. --- Cotangent space. --- D-module. --- Derived category. --- Diagram (category theory). --- Differential operator. --- Dimension (vector space). --- Direct image functor. --- Discrete series representation. --- Disk (mathematics). --- Dot product. --- Double coset. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Endomorphism. --- Euler operator. --- Existential quantification. --- Fibration. --- Function space. --- Functor. --- G-module. --- Gelfand pair. --- Generic point. --- Hilbert space. --- Holomorphic function. --- Homomorphism. --- Hyperfunction. --- Ideal (ring theory). --- Infinitesimal character. --- Inner automorphism. --- Invertible sheaf. --- Irreducibility (mathematics). --- Irreducible representation. --- Levi decomposition. --- Lie algebra. --- Line bundle. --- Linear algebraic group. --- Linear space (geometry). --- Manifold. --- Maximal compact subgroup. --- Maximal torus. --- Metric space. --- Module (mathematics). --- Moment map. --- Morphism. --- Noetherian ring. --- Open set. --- Presheaf (category theory). --- Principal series representation. --- Projective line. --- Projective object. --- Projective space. --- Projective variety. --- Reductive group. --- Riemannian geometry. --- Riemann–Hilbert correspondence. --- Right inverse. --- Ring (mathematics). --- Root system. --- Satake diagram. --- Sheaf (mathematics). --- Sheaf of modules. --- Special case. --- Sphere. --- Square-integrable function. --- Sub"ient. --- Subalgebra. --- Subcategory. --- Subgroup. --- Summation. --- Surjective function. --- Symmetric space. --- Symplectic geometry. --- Tensor product. --- Theorem. --- Triangular matrix. --- Vector bundle. --- Volume form. --- Weyl group.
Choose an application
The recent introduction of the Seiberg-Witten invariants of smooth four-manifolds has revolutionized the study of those manifolds. The invariants are gauge-theoretic in nature and are close cousins of the much-studied SU(2)-invariants defined over fifteen years ago by Donaldson. On a practical level, the new invariants have proved to be more powerful and have led to a vast generalization of earlier results. This book is an introduction to the Seiberg-Witten invariants. The work begins with a review of the classical material on Spin c structures and their associated Dirac operators. Next comes a discussion of the Seiberg-Witten equations, which is set in the context of nonlinear elliptic operators on an appropriate infinite dimensional space of configurations. It is demonstrated that the space of solutions to these equations, called the Seiberg-Witten moduli space, is finite dimensional, and its dimension is then computed. In contrast to the SU(2)-case, the Seiberg-Witten moduli spaces are shown to be compact. The Seiberg-Witten invariant is then essentially the homology class in the space of configurations represented by the Seiberg-Witten moduli space. The last chapter gives a flavor for the applications of these new invariants by computing the invariants for most Kahler surfaces and then deriving some basic toological consequences for these surfaces.
Four-manifolds (Topology) --- Seiberg-Witten invariants. --- Mathematical physics. --- Physical mathematics --- Physics --- Invariants --- 4-dimensional manifolds (Topology) --- 4-manifolds (Topology) --- Four dimensional manifolds (Topology) --- Manifolds, Four dimensional --- Low-dimensional topology --- Topological manifolds --- Mathematics --- Affine space. --- Affine transformation. --- Algebra bundle. --- Algebraic surface. --- Almost complex manifold. --- Automorphism. --- Banach space. --- Clifford algebra. --- Cohomology. --- Cokernel. --- Complex dimension. --- Complex manifold. --- Complex plane. --- Complex projective space. --- Complex vector bundle. --- Complexification (Lie group). --- Computation. --- Configuration space. --- Conjugate transpose. --- Covariant derivative. --- Curvature form. --- Curvature. --- Differentiable manifold. --- Differential topology. --- Dimension (vector space). --- Dirac equation. --- Dirac operator. --- Division algebra. --- Donaldson theory. --- Duality (mathematics). --- Eigenvalues and eigenvectors. --- Elliptic operator. --- Elliptic surface. --- Equation. --- Fiber bundle. --- Frenet–Serret formulas. --- Gauge fixing. --- Gauge theory. --- Gaussian curvature. --- Geometry. --- Group homomorphism. --- Hilbert space. --- Hodge index theorem. --- Homology (mathematics). --- Homotopy. --- Identity (mathematics). --- Implicit function theorem. --- Intersection form (4-manifold). --- Inverse function theorem. --- Isomorphism class. --- K3 surface. --- Kähler manifold. --- Levi-Civita connection. --- Lie algebra. --- Line bundle. --- Linear map. --- Linear space (geometry). --- Linearization. --- Manifold. --- Mathematical induction. --- Moduli space. --- Multiplication theorem. --- Neighbourhood (mathematics). --- One-form. --- Open set. --- Orientability. --- Orthonormal basis. --- Parameter space. --- Parametric equation. --- Parity (mathematics). --- Partial derivative. --- Principal bundle. --- Projection (linear algebra). --- Pullback (category theory). --- Quadratic form. --- Quaternion algebra. --- Quotient space (topology). --- Riemann surface. --- Riemannian manifold. --- Sard's theorem. --- Sign (mathematics). --- Sobolev space. --- Spin group. --- Spin representation. --- Spin structure. --- Spinor field. --- Subgroup. --- Submanifold. --- Surjective function. --- Symplectic geometry. --- Symplectic manifold. --- Tangent bundle. --- Tangent space. --- Tensor product. --- Theorem. --- Three-dimensional space (mathematics). --- Trace (linear algebra). --- Transversality (mathematics). --- Two-form. --- Zariski tangent space.
Choose an application
Many of the operators one meets in several complex variables, such as the famous Lewy operator, are not locally solvable. Nevertheless, such an operator L can be thoroughly studied if one can find a suitable relative parametrix--an operator K such that LK is essentially the orthogonal projection onto the range of L. The analysis is by far most decisive if one is able to work in the real analytic, as opposed to the smooth, setting. With this motivation, the author develops an analytic calculus for the Heisenberg group. Features include: simple, explicit formulae for products and adjoints; simple representation-theoretic conditions, analogous to ellipticity, for finding parametrices in the calculus; invariance under analytic contact transformations; regularity with respect to non-isotropic Sobolev and Lipschitz spaces; and preservation of local analyticity. The calculus is suitable for doing analysis on real analytic strictly pseudoconvex CR manifolds. In this context, the main new application is a proof that the Szego projection preserves local analyticity, even in the three-dimensional setting. Relative analytic parametrices are also constructed for the adjoint of the tangential Cauchy-Riemann operator.Originally published in 1990.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Pseudodifferential operators. --- Functions of several complex variables. --- Solvable groups. --- Analytic function. --- Analytic set. --- Associative property. --- Asymptotic expansion. --- Atkinson's theorem. --- Banach space. --- Bilinear map. --- Boundary value problem. --- Bounded function. --- Bounded operator. --- Bump function. --- C space. --- CR manifold. --- Cauchy problem. --- Cauchy's integral formula. --- Cauchy–Schwarz inequality. --- Cayley transform. --- Characteristic function (probability theory). --- Characterization (mathematics). --- Coefficient. --- Cokernel. --- Combinatorics. --- Complex conjugate. --- Complex number. --- Complexification (Lie group). --- Contact geometry. --- Convolution. --- Darboux's theorem (analysis). --- Darboux's theorem. --- Diagram (category theory). --- Diffeomorphism. --- Difference "ient. --- Differential operator. --- Dimension (vector space). --- Dirac delta function. --- Eigenvalues and eigenvectors. --- Elliptic operator. --- Equation. --- Existential quantification. --- Explicit formulae (L-function). --- Factorial. --- Fourier inversion theorem. --- Fourier series. --- Fourier transform. --- Fundamental solution. --- Heisenberg group. --- Hermitian adjoint. --- Hilbert space. --- Hodge theory. --- Hypoelliptic operator. --- Hölder's inequality. --- Implicit function theorem. --- Integral transform. --- Invertible matrix. --- Leibniz integral rule. --- Lie algebra. --- Mathematical induction. --- Mathematical proof. --- Mean value theorem. --- Multinomial theorem. --- Neighbourhood (mathematics). --- Neumann series. --- Nilpotent group. --- Orthogonal transformation. --- Orthonormal basis. --- Oscillatory integral. --- Paley–Wiener theorem. --- Parametrix. --- Parity (mathematics). --- Partial differential equation. --- Partition of unity. --- Plancherel theorem. --- Polynomial. --- Power function. --- Power series. --- Product rule. --- Property B. --- Pseudo-differential operator. --- Pullback (category theory). --- Quadratic form. --- Regularity theorem. --- Riesz transform. --- Schwartz space. --- Scientific notation. --- Self-adjoint operator. --- Self-adjoint. --- Sesquilinear form. --- Several complex variables. --- Singular integral. --- Special case. --- Summation. --- Support (mathematics). --- Symmetrization. --- Theorem. --- Topology. --- Triangle inequality. --- Unbounded operator. --- Union (set theory). --- Unitary transformation. --- Variable (mathematics).
Listing 1 - 8 of 8 |
Sort by
|