Narrow your search

Library

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

VIVES (2)

VUB (2)

UGent (1)

ULiège (1)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2012 (2)

Listing 1 - 2 of 2
Sort by

Book
Hybrid Dynamical Systems : Modeling, Stability, and Robustness
Authors: --- ---
ISBN: 1283439778 9786613439772 1400842638 9781400842636 0691153892 9780691153896 Year: 2012 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms--algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, Hybrid Dynamical Systems unifies and generalizes earlier developments in continuous-time and discrete-time nonlinear systems. It presents hybrid system versions of the necessary and sufficient Lyapunov conditions for asymptotic stability, invariance principles, and approximation techniques, and examines the robustness of asymptotic stability, motivated by the goal of designing robust hybrid control algorithms. This self-contained and classroom-tested book requires standard background in mathematical analysis and differential equations or nonlinear systems. It will interest graduate students in engineering as well as students and researchers in control, computer science, and mathematics.

Keywords

Automatic control. --- Control theory. --- Dynamics. --- Dynamical systems --- Kinetics --- Mathematics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics --- Dynamics --- Machine theory --- Control engineering --- Control equipment --- Control theory --- Engineering instruments --- Automation --- Programmable controllers --- Hermes solutions. --- Krasovskii regularization. --- Krasovskii solutions. --- Lyapunov conditions. --- Lyapunov functions. --- Lyapunov-like functions. --- asymptotic stability. --- closed sets. --- compact sets. --- conical approximation. --- conical hybrid system. --- continuity properties. --- continuous time. --- continuous-time systems. --- data structure. --- differential equations. --- differential inclusions. --- discrete time. --- discrete-time systems. --- dynamical systems. --- equilibrium points. --- flow map. --- flow set. --- generalized solutions. --- graphical convergence. --- hybrid arcs. --- hybrid control algorithms. --- hybrid dynamical systems. --- hybrid feedback control. --- hybrid models. --- hybrid system. --- hybrid time domains. --- invariance principles. --- jump map. --- jump set. --- modeling frameworks. --- modeling. --- nonlinear systems. --- numerical simulations. --- output function. --- pre-asymptotic stability. --- pre-asymptotically stable sets. --- precompact solutions. --- regularity properties. --- set convergence. --- set-valued analysis. --- set-valued mappings. --- smooth Lyapunov function. --- solution concept. --- stability theory. --- state measurement error. --- state perturbations. --- switching signals. --- switching systems. --- uniform asymptotic stability. --- well-posed hybrid systems. --- well-posed problems. --- well-posedness. --- ω-limit sets. --- Nonlinear control theory.


Book
Mathematical analysis of deterministic and stochastic problems in complex media electromagnetics
Authors: --- ---
ISBN: 1680159038 1283439786 9786613439789 1400842654 9781400842650 9781680159035 0691142173 9780691142173 Year: 2012 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Electromagnetic complex media are artificial materials that affect the propagation of electromagnetic waves in surprising ways not usually seen in nature. Because of their wide range of important applications, these materials have been intensely studied over the past twenty-five years, mainly from the perspectives of physics and engineering. But a body of rigorous mathematical theory has also gradually developed, and this is the first book to present that theory. Designed for researchers and advanced graduate students in applied mathematics, electrical engineering, and physics, this book introduces the electromagnetics of complex media through a systematic, state-of-the-art account of their mathematical theory. The book combines the study of well posedness, homogenization, and controllability of Maxwell equations complemented with constitutive relations describing complex media. The book treats deterministic and stochastic problems both in the frequency and time domains. It also covers computational aspects and scattering problems, among other important topics. Detailed appendices make the book self-contained in terms of mathematical prerequisites, and accessible to engineers and physicists as well as mathematicians.

Keywords

Electromagnetism --- Stochastic control theory. --- Mathematical analysis. --- 517.1 Mathematical analysis --- Mathematical analysis --- Control theory --- Stochastic processes --- Mathematics. --- AtkinsonЗilcox expansion theorem. --- Beltrami fields. --- Faedo-Galerkin approach. --- Herglotz wave functions. --- Hilbert Uniqueness method. --- Maxwell equations. --- Maxwell operator. --- PDEs. --- applied mathematics. --- auxiliary elliptic problems. --- boundary controllability. --- boundary integral equation. --- boundary value problem. --- chiral material. --- chiral media. --- chirality. --- compact embeddings. --- complex electromagnetic media. --- complex media. --- constitutive relations. --- controllability problem. --- controllability. --- decompositions. --- differential equations. --- dispersive media. --- dyadics. --- eigenvalue problems. --- electric flux density. --- electrical engineering. --- electromagnetic complex media. --- electromagnetic fields. --- electromagnetic media. --- electromagnetic wave scattering. --- electromagnetic waves. --- electromagnetics. --- evolution family approach. --- evolution operators. --- evolution problems. --- exterior problems. --- finite-dimensional space. --- fixed point approach. --- frequency. --- function spaces. --- general scattering theorem. --- generalised integral transforms. --- geometry. --- handedness. --- homogenisation problem. --- homogenisation. --- homogenised media. --- homogenised system. --- infinite Frchet differentiability. --- integrodifferential equations. --- integrodifferential evolution equation. --- interior domain problem. --- magnetic flux density. --- mathematical modelling. --- mathematical theory. --- nonlinear PDEs. --- nonlinear model. --- nonlinear phenomena. --- nonlinear problems. --- nonlinearity. --- operators. --- optical theorem. --- penetrable obstacle. --- perfectly conducting obstacle. --- periodic media. --- physics. --- plane electromagnetic waves. --- reciprocity principle. --- scattering problems. --- scattering process. --- scattering theories. --- scattering theory. --- semigroup approach. --- semigroup arguments. --- semigroup-based approach. --- solvability. --- spaces. --- spectral theory. --- standard differential. --- stochastic integrodifferential equations. --- time domain. --- time-harmonic electromagnetic wave. --- time-harmonic problems. --- time. --- trace operators. --- two-scale expansion. --- variational formulation. --- vector analysis. --- wave motions. --- wave operators. --- well posedness.

Listing 1 - 2 of 2
Sort by