Listing 1 - 5 of 5 |
Sort by
|
Choose an application
This dissertation by Elina Rönnberg focuses on two critical aspects of integer programming: nurse scheduling and column generation. The work explores how integer programming can be applied to solve complex decision-making and planning problems, particularly in healthcare settings. It discusses the modeling phase, where real-world problems are translated into mathematical descriptions, and the solution phase, which involves developing methods for generating practical solutions. The dissertation highlights collaboration with healthcare to create effective nurse schedules and introduces methodologies for column generation, ensuring solutions are feasible and integral. The intended audience includes researchers and practitioners in operations research and optimization.
Integer programming. --- Operations research. --- Integer programming --- Operations research
Choose an application
Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.
Integer programming. --- Mathematical optimization. --- Nonlinear programming. --- Nonlinear programming --- Integer programming --- Mathematical optimization --- Civil & Environmental Engineering --- Engineering & Applied Sciences --- Operations Research --- Mathematics. --- Approximation theory. --- Algorithms. --- Approximations and Expansions. --- Continuous Optimization. --- Programming (Mathematics) --- Math --- Science --- Algorism --- Algebra --- Arithmetic --- Foundations --- Optimization (Mathematics) --- Optimization techniques --- Optimization theory --- Systems optimization --- Mathematical analysis --- Maxima and minima --- Operations research --- Simulation methods --- System analysis --- Theory of approximation --- Functional analysis --- Functions --- Polynomials --- Chebyshev systems
Choose an application
Dynamic programming --- Control theory --- Programmation dynamique --- Théorie de la commande --- 681.3*G16 Optimization: constrained optimization; gradient methods; integer programming; least squares methods; linear programming; nonlinear programming (Numericalanalysis) --- Optimization: constrained optimization; gradient methods; integer programming; least squares methods; linear programming; nonlinear programming (Numericalanalysis) --- 519.85 --- 681.3*G16 --- 519.85 Mathematical programming --- Mathematical programming --- Operational research. Game theory --- Dynamic programming. --- Control theory. --- Mathematical optimization --- Optimisation mathématique --- Programmation dynamique. --- Théorie de la commande. --- Dynamische Optimierung --- Optimale Kontrolle --- Mathematical optimization.
Choose an application
Combinatorial optimization is a fascinating topic. Combinatorial optimization problems arise in a wide variety of important fields such as transportation, telecommunications, computer networking, location, planning, distribution problems, etc. Important and significant results have been obtained on the theory, algorithms and applications over the last few decades. In combinatorial optimization, many network design problems can be generalized in a natural way by considering a related problem on a clustered graph, where the original problem's feasibility constraints are expressed in terms of the clusters, i.e., node sets instead of individual nodes. This class of problems is usually referred to as generalized network design problems (GNDPs) or generalized combinatorial optimization problems. The express purpose of this monograph is to describe a series of mathematical models, methods, propositions, algorithms developed in the last years on generalized network design problems in a unified manner. The book consists of seven chapters, where in addition to an introductory chapter, the following generalized network design problems are formulated and examined: the generalized minimum spanning tree problem, the generalized traveling salesman problem, the railway traveling salesman problem, the generalized vehicle routing problem, the generalized fixed-charge network design problem and the generalized minimum vertex-biconnected network problem. The book will be useful for researchers, practitioners, and graduate students in operations research, optimization, applied mathematics and computer science. Due to the substantial practical importance of some presented problems, researchers in other areas will find this book useful, too.
Combinatorial optimization. --- Computer networks -- Design and construction -- Mathematical models. --- Linear programming. --- Combinatorial optimization --- Computer networks --- Linear programming --- Civil & Environmental Engineering --- Engineering & Applied Sciences --- Operations Research --- Communication systems, Computer --- Computer communication systems --- Data networks, Computer --- ECNs (Electronic communication networks) --- Electronic communication networks --- Networks, Computer --- Teleprocessing networks --- Data transmission systems --- Digital communications --- Electronic systems --- Information networks --- Telecommunication --- Cyberinfrastructure --- Electronic data processing --- Network computers --- Optimization, Combinatorial --- Combinatorial analysis --- Mathematical optimization --- Production scheduling --- Programming (Mathematics) --- Design and construction --- Mathematical models --- Distributed processing --- Generalized Network Designed Problem. --- Heuristic Algorithm, Metaheuristic Algorithm. --- Integer Programming. --- Network Design Problem. --- Network Design. --- Optimization. --- Mathematical models.
Choose an application
Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Containing basic theory and a wealth of new views and results, it will become an essential resource for graduate students and researchers. Although Mumford-Tate groups can be defined for general structures, their theory and use to date has mainly been in the classical case of abelian varieties. While the book does examine this area, it focuses on the nonclassical case. The general theory turns out to be very rich, such as in the unexpected connections of finite dimensional and infinite dimensional representation theory of real, semisimple Lie groups. The authors give the complete classification of Hodge representations, a topic that should become a standard in the finite-dimensional representation theory of noncompact, real, semisimple Lie groups. They also indicate that in the future, a connection seems ready to be made between Lie groups that admit discrete series representations and the study of automorphic cohomology on "ients of Mumford-Tate domains by arithmetic groups. Bringing together complex geometry, representation theory, and arithmetic, this book opens up a fresh perspective on an important subject.
Mumford-Tate groups. --- Geometry, Algebraic. --- Algebraic geometry --- Geometry --- Hodge theory --- Mumford-Tate groups --- Deligne torus integer. --- Galois group. --- Grothendieck conjecture. --- Hodge decomposition. --- Hodge domain. --- Hodge filtration. --- Hodge orientation. --- Hodge representation. --- Hodge structure. --- Hodge tensor. --- Hodge theory. --- Kubota rank. --- Lie algebra representation. --- Lie group. --- Mumford-Tate domain. --- Mumford-Tate group. --- Mumford-Tate subdomain. --- Noether-Lefschetz locus. --- Vogan diagram method. --- Weyl group. --- abelian variety. --- absolute Hodge class. --- algebraic geometry. --- arithmetic group. --- automorphic cohomology. --- classical group. --- compact dual. --- complex manifold. --- complex multiplication Hodge structure. --- complex multiplication. --- endomorphism algebra. --- exceptional group. --- holomorphic mapping. --- homogeneous complex manifold. --- homomorphism. --- mixed Hodge structure. --- moduli space. --- monodromy group. --- natural symmetry group. --- oriented imaginary number fields. --- period domain. --- period map. --- polarization. --- polarized Hodge structure. --- pure Hodge structure. --- reflex field. --- semisimple Lie algebra. --- semisimple Lie group. --- Γ-equivalence classes.
Listing 1 - 5 of 5 |
Sort by
|