Narrow your search

Library

KU Leuven (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLouvain (1)

UCLL (1)

ULB (1)

ULiège (1)

UNamur (1)

VIVES (1)


Resource type

book (2)


Language

English (1)

French (1)


Year
From To Submit

2011 (2)

Listing 1 - 2 of 2
Sort by

Book
Marquage magnétique de cellules tumorales permettant leur suivi non-invasif en IRM lors du processus de métastatisation
Authors: --- ---
Year: 2011 Publisher: Bruxelles: UCL,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The invasion of cancer cells in the body of a patient remains the most terrifying and problematic trait of cancer. Indeed, in addition to affect multiple organs, metastases are often difficult to excise, are particularly resistant to treatment and sometimes can be source of relapses. It is therefore imperative to understand the mechanisms and identify the actors involved in metastasis formation in order to find new therapies targeting this process. Non-invasive monitoring of metastatic cells in experimental models represents a valuable tool for the study of migration in vivo. Magnetic resonance imaging (MRI) is particularly well suited for this because it is characterized by a high spatial resolution and produces images of whole living organisms. However, ceil populations that are studied must first be labeled to be specifically detected from surrounding tissues. To this end, particles of iron oxide, a new class of MRI contrast agents with superparamagnetic properties, can create a major change in MRI signal precisely where the magnetically labeled ceils lie. Typically, this labeling requires first an interaction between the particle and the cell membrane and then its eventual internalization into the cell. In this work, different cell lines were labeled in vitro with iron oxide particles. The aim was to develop a cellular model that could be detectable by MRI in order to provide a tool permitting the study of mechanisms involved in metastasis formation after transplantation of a primitive tumor in mice. It has already been shown that labeling efficiency depended on several factors such as the superparamagnetic particle type (size and coating) and incubation conditions (time, concentration,...). Furthermore, although a wide variety of non-phagocytic cells can internalize nanoparticles located nearby, the ability to absorb the contrast agent remains unique to each ceil type. Labeling of tumor ceils was first evaluated qualitatively with distributions studies of various particles into the cells. Then the post-labeling analysis of intracellular iron load and the possible cytotoxicity has completed the evaluation of the effectiveness of the method. Particularly, we developed a novel approach to quantify iron oxides by electron spin resonance (ESR). This was compared with conventional methods such as spectrophotometry, fluorimetry and ICP-MS. After these experiments, optimal conditions for labeling tumor cells have been identified and validated by their visualization in mice placed in a high magnetic field MRL L’invasion de cellules cancéreuses dans le corps du malade reste l’aspect le plus terrifiant et le plus problématique de la maladie cancéreuse. En effet, en plus de l’atteinte de multiples organes, ces métastases sont souvent difficiles à exciser chirurgicalement, particulièrement résistantes aux traitements et parfois à la base de rechutes du patient. Il est donc impératif aujourd’hui de comprendre les mécanismes et d’identifier les acteurs de la métastatisation afin de trouver de nouvelles stratégies thérapeutiques ciblant spécifiquement ce processus. Le suivi non-invasif de cellules métastatiques dans des modèles expérimentaux représente un outil précieux pour l’étude de leur distribution in vivo. L’imagerie par résonance magnétique (IRM) est une technique particulièrement bien adaptée pour l’étude des métastases puisqu’elle est caractérisée par une résolution spatiale élevée produisant des images d’organismes vivants entiers. Cependant, les populations cellulaires étudiées doivent préalablement être marquées afin d’être détectées spécifiquement par rapport au tissu environnant. Pour ce faire, des particules d’oxyde de fer, une nouvelle classe d’agents de contraste IRIvI aux propriétés superparamagnétiques, permettent de créer un important changement dans le signal IRM précisément à l’endroit où se situe la cellule marquée magnétiquement. Typiquement, ce marquage nécessite d’abord une interaction entre la particule et la membrane cellulaire et ensuite son éventuelle internalisation dans la cellule. Dans ce travail, différentes souches cellulaires tumorales ont été marquées in vitro avec des particules d’oxyde de fer. Le but était de développer un modèle détectable en TRÎvI pour l’étude ultérieure des mécanismes impliqués dans la formation de métastases après implantation d’une tumeur primaire chez la souris. Il a déjà été montré que l’efficacité du marquage dépendait de plusieurs facteurs tels que le type de particule superparamagnétique utilisé (son enrobage, sa taille) et les conditions d’incubation (temps, concentration,...). De plus, bien qu’une grande variété de cellules non-phagocytaires puisse internaliser des nanoparticules situées à proximité, la capacité à absorber l’agent de contraste reste propre à chaque type cellulaire. Le marquage de cellules tumorales a d’abord été évalué d’un point de vue qualitatif par des études de distribution de différentes particules dans les cellules. Ensuite, l’analyse post-marquage de la charge intracellulaire en fer et de l’éventuelle cytotoxicité a complété l’évaluation de l’efficacité de la méthode. En particulier, nous avons développé une approche originale de quantification des oxydes de fer par résonance paramagnétique électronique (RPE). Celle-ci a été comparée aux méthodes classiques telles que la spectrophotométrie, la fluorimétrie et l’ICP-MS. Au terme de ces expériences, les conditions optimales pour le marquage de cellules tumorales ont pu être mises en évidence et validées par leur visualisation chez la souris placée dans un appareil IRM à haut champ magnétique


Book
Principles and Applications of ESR Spectroscopy
Authors: --- ---
ISBN: 1402053436 1402053444 9781402053436 Year: 2011 Publisher: Dordrecht : Springer Netherlands : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"Principles and Applications of ESR Spectroscopy" fills the gap between the detailed monographs in ESR spectroscopy and the general textbooks in molecular physics, physical chemistry, biochemistry or spectroscopy. The latter only briefly explain the underlying theory and do not provide details about applications, while the currently available ESR textbooks are primarily focused on the technique as such. This text is based upon the authors’ long experience of teaching the subject to a mixed audience, in the extreme case ranging from physics to biology. The potential of the method is illustrated with applications in fields such as molecular science, catalysis and environmental sciences, polymer and materials sciences, bio-chemistry and radiation chemistry/physics, which were selected from the authors’ wide experience. Theoretical derivations have in general been omitted, as they have been presented repeatedly in previous works. The necessary theory is instead illustrated by practical examples from the literature. "Principles and Applications of ESR Spectroscopy" provides the principles of continuous wave and pulsed ESR techniques and illustrates the applications at a level that is accessible to masters and doctoral students as well as to scientists in physical chemistry/chemical physics, catalysis and environmental sciences, polymer science, free radical chemistry in bio-chemistry and medicine, materials science, radiation dosimetry and dating, as well as radiation physics and chemistry.

Keywords

Chemistry --- Physical Sciences & Mathematics --- Analytical Chemistry --- Electron paramagnetic resonance spectroscopy. --- Electron spin resonance spectroscopy --- EPR spectroscopy --- ESR spectroscopy --- Chemistry. --- Analytical chemistry. --- Physical chemistry. --- Atomic structure. --- Molecular structure. --- Spectra. --- Solid state physics. --- Spectroscopy. --- Microscopy. --- Analytical Chemistry. --- Physical Chemistry. --- Atomic/Molecular Structure and Spectra. --- Solid State Physics. --- Spectroscopy and Microscopy. --- Spectrum analysis --- Analytical biochemistry. --- Chemistry, Physical organic. --- Chemistry, Physical organic --- Chemistry, Organic --- Chemistry, Physical and theoretical --- Analytic biochemistry --- Biochemistry --- Chemistry, Analytic --- Bioanalytic chemistry --- Bioanalytical chemistry --- Analytical chemistry --- Atomic structure  . --- Molecular structure . --- Physics --- Solids --- Structure, Molecular --- Chemical structure --- Structural bioinformatics --- Structure, Atomic --- Atomic theory --- Analysis, Microscopic --- Light microscopy --- Micrographic analysis --- Microscope and microscopy --- Microscopic analysis --- Optical microscopy --- Optics --- Analysis, Spectrum --- Spectra --- Spectrochemical analysis --- Spectrochemistry --- Spectrometry --- Spectroscopy --- Interferometry --- Radiation --- Wave-motion, Theory of --- Absorption spectra --- Light --- Spectroscope --- Chemistry, Theoretical --- Physical chemistry --- Theoretical chemistry --- Analysis, Chemical --- Analytic chemistry --- Chemical analysis --- Qualitative --- Electron paramagnetic resonance spectroscopy --- 543.42 --- 543.08 --- 543.08 Analytical measurement --- Analytical measurement --- 543.42 Spectrum analysis. Spectroscopy. Spectrography. Spectrometry. Spectrophotometry. Fluorescence analysis --- Spectrum analysis. Spectroscopy. Spectrography. Spectrometry. Spectrophotometry. Fluorescence analysis

Listing 1 - 2 of 2
Sort by