Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Choose an application
This volume is composed of two parts: Mathematical and Numerical Analysis for Strongly Nonlinear Plasma Models and Exact Controllability and Observability for Quasilinear Hyperbolic Systems and Applications. It presents recent progress and results obtained in the domains related to both subjects without attaching much importance to the details of proofs but rather to difficulties encountered, to open problems and possible ways to be exploited. It will be very useful for promoting further study on some important problems in the future.
Choose an application
This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of (a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics; (b) specialists in continuum mechanics who may need analytical tools; (c) experts in numerical analysis who wish to learn the underlying mathematical theory; and (d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conservation laws. New to the 3rd edition is an account of the early history of the subject, spanning the period between 1800 to 1957. Also new is a chapter recounting the recent solution of open problems of long standing in classical aerodynamics. Furthermore, the presentation of a number of topics in the previous edition has been revised and brought up to date, and the collection of applications has been substantially enriched. The bibliography, also expanded and updated, now comprises over fifteen hundred titles. From the reviews of the 2nd edition: "The author is known as one of the leading experts in the field. His masterly written book is, surely, the most complete exposition in the subject." Evgeniy Panov, Zentralblatt MATH "This book is sure to convince every reader that working in this area is challenging, enlightening, and joyful." Katarina Jegdic, SIAM Review.
Conservation laws (Physics). --- Differential equations, Hyperbolic. --- Field theory (Physics). --- Conservation laws (Physics) --- Differential equations, Hyperbolic --- Field theory (Physics) --- Mathematics --- Physics --- Nuclear Physics --- Calculus --- Physical Sciences & Mathematics --- Classical field theory --- Continuum physics --- Hyperbolic differential equations --- Mathematics. --- Partial differential equations. --- Mechanics. --- Thermodynamics. --- Continuum mechanics. --- Structural mechanics. --- Partial Differential Equations. --- Continuum Mechanics and Mechanics of Materials. --- Structural Mechanics. --- Continuum mechanics --- Differential equations, Partial --- Physical laws
Choose an application
Les systèmes de lois de conservation non linéaires modélisent les écoulements compressibles et incompressibles dans des domaines extrêmement variés tels que l'aéronautique, l'hydrodynamique, la physique des plasmas, la combustion, le trafic routier, l'élasticité non linéaire. Le cadre mathématique général est celui des systèmes de lois de conservation. Les exemples physiques sont nombreux et souvent spectaculaires. Cela contribue à fonder une nouvelle discipline, la Mécanique des Fluides Numérique. La présentation proposée porte l'accent sur les systèmes que l'on appellera lagrangiens ou écrits en coordonnées de Lagrange, sur leurs relations avec les systèmes en coordonnées d'Euler et sur les possibilités que cela offre pour la construction et l'analyse de schémas numériques entropiques. De nombreux exemples numériques sont présentés en liaison avec le contexte physique, ainsi que des exercices. It has long been observed that systems of conservation laws written in the Lagrange variable offer a good alternative for the numerical computation of approximate solutions. In this monograph we seek to develop a systematic presentation of the use of the Lagrange variable for the analysis and discretization of systems of conservation laws arising in continuum mechanics.
Conservation laws (Mathematics). --- Lagrange equations --Numerical solutions. --- Conservation laws (Mathematics) --- Lagrange equations --- Mathematics --- Mathematical Theory --- Calculus --- Physical Sciences & Mathematics --- Numerical solutions --- Mathematics. --- Mathematics, general. --- Differential equations, Hyperbolic --- Math --- Science
Choose an application
"The field of nonlinear hyperbolic equations or systems has seen a tremendous development since the beginning of the 1980s. We are concentrating here on multidimensional situations, and on quasilinear equations or systems, that is, when the coefficients of the principal part depend on the unknown function itself. The pioneering works by F. John, D. Christodoulou, L. Hormander, S. Klainerman, A. Majda and many others have been devoted mainly to the questions of blowup, lifespan, shocks, global existence, etc. Some overview of the classical results can be found in the books of Majda [42] and Hormander [24]. On the other hand, Christodoulou and Klainerman [18] proved in around 1990 the stability of Minkowski space, a striking mathematical result about the Cauchy problem for the Einstein equations. After that, many works have dealt with diagonal systems of quasilinear wave equations, since this is what Einstein equations reduce to when written in the so-called harmonic coordinates. The main feature of this particular case is that the (scalar) principal part of the system is a wave operator associated to a unique Lorentzian metric on the underlying space-time"--Provided by publisher.
Nonlinear wave equations. --- Differential equations, Hyperbolic. --- Quantum theory. --- Geometry, Differential. --- Differential geometry --- Quantum dynamics --- Quantum mechanics --- Quantum physics --- Physics --- Mechanics --- Thermodynamics --- Hyperbolic differential equations --- Differential equations, Partial --- Wave equation
Listing 1 - 5 of 5 |
Sort by
|