Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Focusing on the modeling and solution of deterministic multistage decision problems, this book looks at dynamic programming as a problem-solving optimization method. With over 400 useful references, this edition discusses the dynamic programming analysis of a problem, illustrates the rationale behind this analysis, and clarifies the theoretical grounds that justify the rationale. It also explains the meaning and role of the concept of state in dynamic programming, examines the purpose and function of the principle of optimality, and outlines solution strategies for problems defiant of conventi
Choose an application
Choose an application
As a developer you are likely painfully aware that not all features of an application can be anticipated when the software ships. In order to cope with these eventualities and save yourself time (and perhaps money), it makes sense to write your applications in such a way that end users can be made as independent of the developers as possible. Giving your users the power to make changes to the way the application operates once it has shipped gives them more control over the way the application works, while reducing the frequency with which you need to redistribute application files, creating a win-win situation. Pro Dynamic .NET 4.0 Applications explains how to give users the power to create additional data-entry fields, validation logic, and new reports without assistance from the application developer. You will learn how to do this for both desktop (C# and WPF) and web (ASP) applications.
Application software -- Development. --- Dynamic programming. --- Microsoft .NET framework. --- Dynamic programming --- Engineering & Applied Sciences --- Computer Science --- Information Technology --- Computer Science (Hardware & Networks) --- Microsoft .NET Framework. --- Computer programming. --- Application software --- Development. --- Development of application software --- Computers --- Electronic computer programming --- Electronic data processing --- Electronic digital computers --- Programming (Electronic computers) --- Programming --- Computer science. --- Computer Science. --- Computer Science, general. --- Coding theory --- Microsoft software. --- Software engineering. --- Microsoft and .NET. --- Software Engineering/Programming and Operating Systems. --- Computer software engineering --- Engineering --- Computer software
Choose an application
Splines, both interpolatory and smoothing, have a long and rich history that has largely been application driven. This book unifies these constructions in a comprehensive and accessible way, drawing from the latest methods and applications to show how they arise naturally in the theory of linear control systems. Magnus Egerstedt and Clyde Martin are leading innovators in the use of control theoretic splines to bring together many diverse applications within a common framework. In this book, they begin with a series of problems ranging from path planning to statistics to approximation. Using the tools of optimization over vector spaces, Egerstedt and Martin demonstrate how all of these problems are part of the same general mathematical framework, and how they are all, to a certain degree, a consequence of the optimization problem of finding the shortest distance from a point to an affine subspace in a Hilbert space. They cover periodic splines, monotone splines, and splines with inequality constraints, and explain how any finite number of linear constraints can be added. This book reveals how the many natural connections between control theory, numerical analysis, and statistics can be used to generate powerful mathematical and analytical tools. This book is an excellent resource for students and professionals in control theory, robotics, engineering, computer graphics, econometrics, and any area that requires the construction of curves based on sets of raw data.
Interpolation. --- Smoothing (Numerical analysis) --- Smoothing (Statistics) --- Curve fitting. --- Splines. --- Spline theory. --- Spline functions --- Approximation theory --- Interpolation --- Joints (Engineering) --- Mechanical movements --- Harmonic drives --- Fitting, Curve --- Numerical analysis --- Least squares --- Statistics --- Curve fitting --- Graduation (Statistics) --- Roundoff errors --- Graphic methods --- Accuracy and precision. --- Affine space. --- Affine variety. --- Algorithm. --- Approximation. --- Arbitrarily large. --- B-spline. --- Banach space. --- Bernstein polynomial. --- Bifurcation theory. --- Big O notation. --- Birkhoff interpolation. --- Boundary value problem. --- Bézier curve. --- Chaos theory. --- Computation. --- Computational problem. --- Condition number. --- Constrained optimization. --- Continuous function (set theory). --- Continuous function. --- Control function (econometrics). --- Control theory. --- Controllability. --- Convex optimization. --- Convolution. --- Cubic Hermite spline. --- Data set. --- Derivative. --- Differentiable function. --- Differential equation. --- Dimension (vector space). --- Directional derivative. --- Discrete mathematics. --- Dynamic programming. --- Equation. --- Estimation. --- Filtering problem (stochastic processes). --- Gaussian quadrature. --- Gradient descent. --- Gramian matrix. --- Growth curve (statistics). --- Hermite interpolation. --- Hermite polynomials. --- Hilbert projection theorem. --- Hilbert space. --- Initial condition. --- Initial value problem. --- Integral equation. --- Iterative method. --- Karush–Kuhn–Tucker conditions. --- Kernel method. --- Lagrange polynomial. --- Law of large numbers. --- Least squares. --- Linear algebra. --- Linear combination. --- Linear filter. --- Linear map. --- Mathematical optimization. --- Mathematics. --- Maxima and minima. --- Monotonic function. --- Nonlinear programming. --- Nonlinear system. --- Normal distribution. --- Numerical analysis. --- Numerical stability. --- Optimal control. --- Optimization problem. --- Ordinary differential equation. --- Orthogonal polynomials. --- Parameter. --- Piecewise. --- Pointwise. --- Polynomial interpolation. --- Polynomial. --- Probability distribution. --- Quadratic programming. --- Random variable. --- Rate of convergence. --- Ratio test. --- Riccati equation. --- Simpson's rule. --- Simultaneous equations. --- Smoothing spline. --- Smoothing. --- Smoothness. --- Special case. --- Spline (mathematics). --- Spline interpolation. --- Statistic. --- Stochastic calculus. --- Stochastic. --- Telemetry. --- Theorem. --- Trapezoidal rule. --- Waypoint. --- Weight function. --- Without loss of generality.
Listing 1 - 4 of 4 |
Sort by
|