Listing 1 - 3 of 3 |
Sort by
|
Choose an application
Mathematical optimization encompasses both a rich and rapidly evolving body of fundamental theory, and a variety of exciting applications in science and engineering. The present book contains a careful selection of articles on recent advances in optimization theory, numerical methods, and their applications in engineering. It features in particular new methods and applications in the fields of optimal control, PDE-constrained optimization, nonlinear optimization, and convex optimization. The authors of this volume took part in the 14th Belgian-French-German Conference on Optimization (BFG09) organized in Leuven, Belgium, on September 14-18, 2009. The volume contains a selection of reviewed articles contributed by the conference speakers as well as three survey articles by plenary speakers and two papers authored by the winners of the best talk and best poster prizes awarded at BFG09. Researchers and graduate students in applied mathematics, computer science, and many branches of engineering will find in this book an interesting and useful collection of recent ideas on the methods and applications of optimization.
Mathematical optimization --- Optimalisation mathématique --- Wiskundige optimisatie --- Engineering. --- Appl.Mathematics/Computational Methods of Engineering. --- Theoretical and Applied Mechanics. --- Optimization. --- Control. --- Mathematical optimization. --- Engineering mathematics. --- Mechanics, applied. --- Ingénierie --- Optimisation mathématique --- Mathématiques de l'ingénieur --- Engineering --- Engineering mathematics --- Mechanics, Applied --- 519.8 --- 681.3*G16 --- Operational research --- Optimization: constrained optimization; gradient methods; integer programming; least squares methods; linear programming; nonlinear programming (Numericalanalysis) --- 681.3*G16 Optimization: constrained optimization; gradient methods; integer programming; least squares methods; linear programming; nonlinear programming (Numericalanalysis) --- 519.8 Operational research --- Mathematical models
Choose an application
This book results from the authors work done on simulation based optimization problems at the Department of Mathematics, University of Trier, and reported in his postdoctoral thesis (”Habilitationsschrift”) accepted by the Faculty-IV of this University in 2008. The focus of the work has been to develop mathematical methods and algorithms which lead to efficient and high performance computational techniques to solve such optimization problems in real-life applications. Systematic development of the methods and algorithms are presented here. Practical aspects of implementations are discussed at each level as the complexity of the problems increase, supporting with enough number of computational examples. It consists of two parts: first part deals with time dependent optimization problems with applications in environmental engineering and the second part deals with steady state optimization problems, in which the PDEs are solved using semi-iterative or pseudo-time-stepping techniques, with applications in aerodynamics. This book will be useful for scientists and engineers who are looking for efficient numerical methods for PDE-constrained optimization problems. It will be helpful for graduate and Ph.D. students in applied mathematics, aerospace engineering, mechanical engineering, civil engineering and computational engineering during their training and research. This also will provide exciting research and development areas involving realistic applications.
Computational fluid dynamics. --- Constrained optimization. --- Metal-working lubricants. --- Civil Engineering --- Operations Research --- Civil & Environmental Engineering --- Engineering & Applied Sciences --- Differential equations, Partial --- Mathematical optimization. --- Numerical solutions. --- Optimization (Mathematics) --- Optimization techniques --- Optimization theory --- Systems optimization --- Mathematics. --- Computer mathematics. --- Mathematical models. --- Physics. --- Fluids. --- Fluid mechanics. --- Computational Mathematics and Numerical Analysis. --- Mathematical Modeling and Industrial Mathematics. --- Theoretical, Mathematical and Computational Physics. --- Engineering Fluid Dynamics. --- Fluid- and Aerodynamics. --- Computational Science and Engineering. --- Mathematical analysis --- Maxima and minima --- Operations research --- Simulation methods --- System analysis --- Numerical analysis --- Computer science --- Hydraulic engineering. --- Computer science. --- Informatics --- Science --- Engineering, Hydraulic --- Engineering --- Fluid mechanics --- Hydraulics --- Shore protection --- Computer mathematics --- Discrete mathematics --- Electronic data processing --- Mathematics --- Mathematical physics. --- Mechanics --- Physics --- Hydrostatics --- Permeability --- Hydromechanics --- Continuum mechanics --- Physical mathematics --- Models, Mathematical --- Continuum mechanics. --- Continuum Mechanics. --- Data processing. --- Mechanics of continua --- Elasticity --- Mechanics, Analytic --- Field theory (Physics)
Choose an application
Splines, both interpolatory and smoothing, have a long and rich history that has largely been application driven. This book unifies these constructions in a comprehensive and accessible way, drawing from the latest methods and applications to show how they arise naturally in the theory of linear control systems. Magnus Egerstedt and Clyde Martin are leading innovators in the use of control theoretic splines to bring together many diverse applications within a common framework. In this book, they begin with a series of problems ranging from path planning to statistics to approximation. Using the tools of optimization over vector spaces, Egerstedt and Martin demonstrate how all of these problems are part of the same general mathematical framework, and how they are all, to a certain degree, a consequence of the optimization problem of finding the shortest distance from a point to an affine subspace in a Hilbert space. They cover periodic splines, monotone splines, and splines with inequality constraints, and explain how any finite number of linear constraints can be added. This book reveals how the many natural connections between control theory, numerical analysis, and statistics can be used to generate powerful mathematical and analytical tools. This book is an excellent resource for students and professionals in control theory, robotics, engineering, computer graphics, econometrics, and any area that requires the construction of curves based on sets of raw data.
Interpolation. --- Smoothing (Numerical analysis) --- Smoothing (Statistics) --- Curve fitting. --- Splines. --- Spline theory. --- Spline functions --- Approximation theory --- Interpolation --- Joints (Engineering) --- Mechanical movements --- Harmonic drives --- Fitting, Curve --- Numerical analysis --- Least squares --- Statistics --- Curve fitting --- Graduation (Statistics) --- Roundoff errors --- Graphic methods --- Accuracy and precision. --- Affine space. --- Affine variety. --- Algorithm. --- Approximation. --- Arbitrarily large. --- B-spline. --- Banach space. --- Bernstein polynomial. --- Bifurcation theory. --- Big O notation. --- Birkhoff interpolation. --- Boundary value problem. --- Bézier curve. --- Chaos theory. --- Computation. --- Computational problem. --- Condition number. --- Constrained optimization. --- Continuous function (set theory). --- Continuous function. --- Control function (econometrics). --- Control theory. --- Controllability. --- Convex optimization. --- Convolution. --- Cubic Hermite spline. --- Data set. --- Derivative. --- Differentiable function. --- Differential equation. --- Dimension (vector space). --- Directional derivative. --- Discrete mathematics. --- Dynamic programming. --- Equation. --- Estimation. --- Filtering problem (stochastic processes). --- Gaussian quadrature. --- Gradient descent. --- Gramian matrix. --- Growth curve (statistics). --- Hermite interpolation. --- Hermite polynomials. --- Hilbert projection theorem. --- Hilbert space. --- Initial condition. --- Initial value problem. --- Integral equation. --- Iterative method. --- Karush–Kuhn–Tucker conditions. --- Kernel method. --- Lagrange polynomial. --- Law of large numbers. --- Least squares. --- Linear algebra. --- Linear combination. --- Linear filter. --- Linear map. --- Mathematical optimization. --- Mathematics. --- Maxima and minima. --- Monotonic function. --- Nonlinear programming. --- Nonlinear system. --- Normal distribution. --- Numerical analysis. --- Numerical stability. --- Optimal control. --- Optimization problem. --- Ordinary differential equation. --- Orthogonal polynomials. --- Parameter. --- Piecewise. --- Pointwise. --- Polynomial interpolation. --- Polynomial. --- Probability distribution. --- Quadratic programming. --- Random variable. --- Rate of convergence. --- Ratio test. --- Riccati equation. --- Simpson's rule. --- Simultaneous equations. --- Smoothing spline. --- Smoothing. --- Smoothness. --- Special case. --- Spline (mathematics). --- Spline interpolation. --- Statistic. --- Stochastic calculus. --- Stochastic. --- Telemetry. --- Theorem. --- Trapezoidal rule. --- Waypoint. --- Weight function. --- Without loss of generality.
Listing 1 - 3 of 3 |
Sort by
|