Listing 1 - 10 of 23 | << page >> |
Sort by
|
Choose an application
During more than 10 years, the LEP accelerator and the LEP experiments have taken data for a large amount of measurements at the frontier of particle physics. The main outcome is a thorough and successful test of the Standard Model of electroweak interactions. The first part of this volume gives a short theoretical introduction and describes the most important physics results obtained at LEP. Emphasis is put on the properties of the electroweak gauge bosons, which was the main research field at LEP. Details on interesting other physics effects like Colour Reconnection and Bose-Einstein Correlations are discussed as well. A summary of the current electroweak measurements as the pillars of precision tests of theoretical models is given. The analysis of electroweak data concludes the status of electroweak physics as known today. It allows a determination of unmeasured physics parameters of the Standard Model, like the mass of the Higgs boson, but constrains also physics beyond the Standard Model. The second part of this volume introduces the expected electroweak measurements as well as Higgs boson searches at the newly built LHC. After a description of the LHC collider and its experiments, the projected performance for an improved determination of electroweak observables is presented. The masses of the W boson and of the top quark as well as the weak mixing angle are being focused on. One of the main goals of the LHC experiments is however the finding of the Standard Model Higgs boson or of new physics. The search for the Higgs boson and the future determination of its properties, like mass, spin and behaviour under CP transformation, are therefore summarized, pointing out interesting relations with the LEP results. If the LHC experiments meet the expectations presented here they will definitely shed light on one of the primary questions of today's particle physics research: the origin of electroweak symmetry breaking and of the masses of the fundamental particles.
Experimental nuclear and elementary particle physics --- Nuclear physics --- Physics --- ionen --- quarks --- deeltjesfysica --- fysica --- atoomfysica
Choose an application
During more than 10 years, the LEP accelerator and the LEP experiments have taken data for a large amount of measurements at the frontier of particle physics. The main outcome is a thorough and successful test of the Standard Model of electroweak interactions. The first part of this volume gives a short theoretical introduction and describes the most important physics results obtained at LEP. Emphasis is put on the properties of the electroweak gauge bosons, which was the main research field at LEP. Details on interesting other physics effects like Colour Reconnection and Bose-Einstein Correlations are discussed as well. A summary of the current electroweak measurements as the pillars of precision tests of theoretical models is given. The analysis of electroweak data concludes the status of electroweak physics as known today. It allows a determination of unmeasured physics parameters of the Standard Model, like the mass of the Higgs boson, but constrains also physics beyond the Standard Model. The second part of this volume introduces the expected electroweak measurements as well as Higgs boson searches at the newly built LHC. After a description of the LHC collider and its experiments, the projected performance for an improved determination of electroweak observables is presented. The masses of the W boson and of the top quark as well as the weak mixing angle are being focused on. One of the main goals of the LHC experiments is however the finding of the Standard Model Higgs boson or of new physics. The search for the Higgs boson and the future determination of its properties, like mass, spin and behaviour under CP transformation, are therefore summarized, pointing out interesting relations with the LEP results. If the LHC experiments meet the expectations presented here they will definitely shed light on one of the primary questions of today’s particle physics research: the origin of electroweak symmetry breaking and of the masses of the fundamental particles.
Experimental nuclear and elementary particle physics --- Nuclear physics --- Physics --- ionen --- quarks --- deeltjesfysica --- fysica --- atoomfysica
Choose an application
Extensive air showers are a very unique phenomenon. In the more than six decades since their discovery by Auger et al. we have learned a great deal about these extremely energetic events and gained deep insights into high-energy phenomena, particle physics and astrophysics. In this Tutorial, Reference Manual and Data Book Peter K. F. Grieder provides the reader with a comprehensive view of the phenomenology and facts of the various types of interactions and cascades, theoretical background, experimental methods, data evaluation and interpretation, and air shower simulation. He discusses astrophysical aspects of the primary radiation and addresses the questions that continue to puzzle researchers. The book is divided into two parts, each in its own separate volume: Part I in Volume I deals mainly with the basic theoretical framework of the processes that determine an air shower and ends with a summary of ways to extract information on the primary radiation from air shower observations. It also presents a compilation of data representing our current knowledge of the high-energy portion of the primary spectrum and composition. Part II in Volume II mainly contains compilations of experimental and theoretical data, as well as predictions from simulations of individual air shower constituents. Also included are chapters dedicated exclusively to special processes and detection methods: optical atmospheric Cherenkov and fluorescence phenomena that represent special observational windows and have proven to be successful alternatives to particle measurements, yielding three-dimensional insights into the shower process, as well as radio emission, which may develop into a useful future method of detection.
Space research --- Astrophysics --- Experimental nuclear and elementary particle physics --- Nuclear physics --- astrofysica --- kernenergie --- ruimtevaart --- atoomfysica
Choose an application
This book presents the first comprehensive compilation and review of the extensive body of experimental and theoretical material on solar neutrons and related phenomena published in the scientific literature over the last sixty years. Phenomena related to solar neutrons are more specifically: the decay products of solar neutrons solar gamma rays generated in processes like nuclear reactions between solar energetic charged particles and matter of the solar atmosphere, as well as by the capture of solar neutrons by hydrogen atoms in the solar atmosphere the propagation of solar neutrons, solar gamma rays and other secondary particles through the solar photosphere, chromosphere and corona, as well as through interplanetary space and through the Earth's atmosphere. Models and simulations of particle acceleration, interactions, and propagation processes show that observations of solar neutrons and gamma rays in space and in the Earth's atmosphere yield essential and unique information on the source function of energetic solar particles, as well as on the chemical composition and density distribution of plasma in the solar atmosphere. The results described in the book may also be useful for astrophysical studies of other stars and different astrophysical objects, as well as for space weather problems. The book will serve as a reference work for researchers and students in solar physics, plasma, neutron, and gamma ray physics, as well as in cosmic ray physics, space science, geophysics and those researching space weather problems.
Space research --- Solar system --- Astrophysics --- Nuclear physics --- Geophysics --- ionen --- zonnestelsel --- quarks --- astrofysica --- deeltjesfysica --- planeten --- ruimtevaart --- geofysica --- atoomfysica
Choose an application
Super Light Water Reactors and Super Fast Reactors provides an overview of the design and analysis of nuclear power reactors. Readers will gain an understanding of the conceptual design elements and specific analysis methods for supercritical-pressure light water cooled reactors. Nuclear fuel, reactor core, plant control, plant stand-up and stability are among the topics discussed, in addition to safety system and safety analysis parameters. Providing the fundamentals of reactor design criteria and analysis, this volume is a useful reference for engineers, industry professionals, and graduate students involved with nuclear engineering and energy technology.
Thermodynamics --- Nuclear physics --- Nuclear chemistry --- Relation between energy and economics --- Nuclear energy --- ionen --- stralingschemie --- quarks --- deeltjesfysica --- energietechniek --- kernenergie --- atoomfysica
Choose an application
The Handbook of Nuclear Engineering is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all academic levels, this five volume set provides the latest findings in nuclear data and experimental techniques, reactor physics, kinetics, dynamics and control. Readers will also find a detailed description of data assimilation, model validation and calibration, sensitivity and uncertainty analysis, fuel management and cycles, nuclear reactor types and radiation shielding. A discussion of radioactive waste disposal, safeguards and non-proliferation, and fuel processing with partitioning and transmutation is also included. As nuclear technology becomes an important resource of non-polluting sustainable energy in the future, The Handbook of Nuclear Engineering is an excellent reference for practicing engineers, researchers and professionals.
Thermodynamics --- Nuclear physics --- Nuclear chemistry --- Relation between energy and economics --- Nuclear energy --- ionen --- stralingschemie --- quarks --- deeltjesfysica --- energietechniek --- kernenergie --- atoomfysica
Choose an application
Extensive air showers are a very unique phenomenon. In the more than six decades since their discovery by Auger et al. we have learned a great deal about these extremely energetic events and gained deep insights into high-energy phenomena, particle physics and astrophysics. In this Tutorial, Reference Manual and Data Book Peter K. F. Grieder provides the reader with a comprehensive view of the phenomenology and facts of the various types of interactions and cascades, theoretical background, experimental methods, data evaluation and interpretation, and air shower simulation. He discusses astrophysical aspects of the primary radiation and addresses the questions that continue to puzzle researchers. The book is divided into two parts, each in its own separate volume: Part I in Volume I deals mainly with the basic theoretical framework of the processes that determine an air shower and ends with a summary of ways to extract information on the primary radiation from air shower observations. It also presents a compilation of data representing our current knowledge of the high-energy portion of the primary spectrum and composition. Part II in Volume II mainly contains compilations of experimental and theoretical data, as well as predictions from simulations of individual air shower constituents. Also included are chapters dedicated exclusively to special processes and detection methods: optical atmospheric Cherenkov and fluorescence phenomena that represent special observational windows and have proven to be successful alternatives to particle measurements, yielding three-dimensional insights into the shower process, as well as radio emission, which may develop into a useful future method of detection.
Space research --- Astrophysics --- Experimental nuclear and elementary particle physics --- Nuclear physics --- astrofysica --- kernenergie --- ruimtevaart --- atoomfysica --- Cosmic ray showers. --- Nuclear astrophysics.
Choose an application
This book presents the first comprehensive compilation and review of the extensive body of experimental and theoretical material on solar neutrons and related phenomena published in the scientific literature over the last sixty years. Phenomena related to solar neutrons are more specifically: the decay products of solar neutrons solar gamma rays generated in processes like nuclear reactions between solar energetic charged particles and matter of the solar atmosphere, as well as by the capture of solar neutrons by hydrogen atoms in the solar atmosphere the propagation of solar neutrons, solar gamma rays and other secondary particles through the solar photosphere, chromosphere and corona, as well as through interplanetary space and through the Earth's atmosphere. Models and simulations of particle acceleration, interactions, and propagation processes show that observations of solar neutrons and gamma rays in space and in the Earth's atmosphere yield essential and unique information on the source function of energetic solar particles, as well as on the chemical composition and density distribution of plasma in the solar atmosphere. The results described in the book may also be useful for astrophysical studies of other stars and different astrophysical objects, as well as for space weather problems. The book will serve as a reference work for researchers and students in solar physics, plasma, neutron, and gamma ray physics, as well as in cosmic ray physics, space science, geophysics and those researching space weather problems.
Space research --- Solar system --- Astrophysics --- Nuclear physics --- Geophysics --- ionen --- zonnestelsel --- quarks --- astrofysica --- deeltjesfysica --- planeten --- ruimtevaart --- geofysica --- atoomfysica
Choose an application
Super Light Water Reactors and Super Fast Reactors provides an overview of the design and analysis of nuclear power reactors. Readers will gain an understanding of the conceptual design elements and specific analysis methods for supercritical-pressure light water cooled reactors. Nuclear fuel, reactor core, plant control, plant stand-up and stability are among the topics discussed, in addition to safety system and safety analysis parameters. Providing the fundamentals of reactor design criteria and analysis, this volume is a useful reference for engineers, industry professionals, and graduate students involved with nuclear engineering and energy technology. .
Thermodynamics --- Nuclear physics --- Nuclear chemistry --- Relation between energy and economics --- Nuclear energy --- ionen --- stralingschemie --- quarks --- deeltjesfysica --- energietechniek --- kernenergie --- atoomfysica
Choose an application
The Handbook of Nuclear Engineering is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all academic levels, this five volume set provides the latest findings in nuclear data and experimental techniques, reactor physics, kinetics, dynamics and control. Readers will also find a detailed description of data assimilation, model validation and calibration, sensitivity and uncertainty analysis, fuel management and cycles, nuclear reactor types and radiation shielding. A discussion of radioactive waste disposal, safeguards and non-proliferation, and fuel processing with partitioning and transmutation is also included. As nuclear technology becomes an important resource of non-polluting sustainable energy in the future, The Handbook of Nuclear Engineering is an excellent reference for practicing engineers, researchers and professionals.
Thermodynamics --- Nuclear physics --- Nuclear chemistry --- Relation between energy and economics --- Nuclear energy --- ionen --- stralingschemie --- quarks --- deeltjesfysica --- energietechniek --- kernenergie --- atoomfysica
Listing 1 - 10 of 23 | << page >> |
Sort by
|