Listing 1 - 7 of 7
Sort by

Dissertation
Régression quantile bayesienne
Authors: ---
Year: 2009 Publisher: [S.l.]: [chez l'auteur],

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Bayesian networks : an introduction
Authors: ---
ISBN: 9780470743041 Year: 2009 Publisher: Chicheste : J. Wiley,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Pratique du calcul Bayésien
Authors: --- ---
ISBN: 9782287996665 9782287996672 2287996664 Year: 2009 Publisher: Paris: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Pratique du calcul bayésien est né de l'expérience acquise lors des cours donnés en sciences de l'environnement, tant à l'université de Liège (Arlon), qu'à la grande école AgroParisTech (Paris). Son fil conducteur peut se résumer par la locution « de la plume à la souris », tournure empruntée à un opuscule retraçant la vie d'une école fréquentée jadis par le premier auteur. La première partie privilégie les modèles statistiques paramétriques calculables « à la plume » et cependant très riches, tant du point de vue de la présentation des concepts fondateurs du paradigme bayésien, que de leurs applications opérationnelles, notamment en matière d'aide à la décision. Dès le premier chapitre, la représentation du modèle par un graphe acyclique orienté permet de distinguer clairement la phase où la créativité du chercheur s'exprime de celle où il calcule. À cette fin, le logiciel libre WinBUGS sera très utile à l'apprenti modélisateur. La seconde partie présente des applications réelles, plus sophistiquées, qui nécessitent souvent d'introduire une couche de variables latentes entre les observables et les paramètres. Conduire une inférence bayésienne sur ces modèles hiérarchiques implique un recours intensif aux méthodes modernes de calcul et mobilise donc « la souris » de l'ordinateur. Cet ouvrage est dédié aux étudiants et chercheurs qui souhaitent apprendre le calcul bayésien avec des visées opérationnelles. Le lecteur est invité à l'utiliser comme un tremplin lui permettant d'aller aussi loin que son intérêt et/ou ses besoins l'exigent. C'est pourquoi, les treize chapitres offrent un compromis entre la rigueur du langage mathématique et la souplesse de la langue de Molière. Le côté opérationnel est mis en avant. De nombreux exemples, le plus souvent réels, justifient les efforts et illustrent les raisonnements sous-jacents. Les développements théoriques sont donc volontairement limités à l'essentiel et le lecteur désireux de les poursuivre trouvera deux ouvrages de référence publiés dans la même collection.


Book
Bayesian methods for measures of agreement
Author:
ISBN: 9781420083415 1420083414 9780429139666 Year: 2009 Publisher: Boca Raton, Fla CRC


Book
Probabilistic methods for bioinformatics
Author:
ISBN: 9780123704764 0123704766 9786612168420 1282168428 0080919367 9780080919362 9781282168428 6612168420 Year: 2009 Publisher: Amsterdam Boston

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Bayesian network is one of the most important architectures for representing and reasoning with multivariate probability distributions. When used in conjunction with specialized informatics, possibilities of real-world applications are achieved. Probabilistic Methods for BioInformatics explains the application of probability and statistics, in particular Bayesian networks, to genetics. This book provides background material on probability, statistics, and genetics, and then moves on to discuss Bayesian networks and applications to bioinformatics. Rather than getting bogged down


Book
An introduction to decision theory
Author:
ISBN: 9780521716543 9780521888370 0521716543 0521888379 9780511800917 1107386616 0511800916 Year: 2009 Publisher: Cambridge: Cambridge university press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This introduction to decision theory offers comprehensive and accessible discussions of decision-making under ignorance and risk, the foundations of utility theory, the debate over subjective and objective probability, Bayesianism, causal decision theory, game theory, and social choice theory. No mathematical skills are assumed, and all concepts and results are explained in non-technical and intuitive as well as more formal ways. There are over 100 exercises with solutions, and a glossary of key terms and concepts. An emphasis on foundational aspects of normative decision theory (rather than descriptive decision theory) makes the book particularly useful for philosophy students, but it will appeal to readers in a range of disciplines including economics, psychology, political science and computer science.


Book
A first course in Bayesian statistical methods
Author:
ISBN: 9780387924076 9781441928283 9780387922997 0387922997 0387924078 9786612236631 1282236636 Year: 2009 Publisher: New York: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides a compact self-contained introduction to the theory and application of Bayesian statistical methods. The book is accessible to readers having a basic familiarity with probability, yet allows more advanced readers to quickly grasp the principles underlying Bayesian theory and methods. The examples and computer code allow the reader to understand and implement basic Bayesian data analyses using standard statistical models and to extend the standard models to specialized data analysis situations. The book begins with fundamental notions such as probability, exchangeability and Bayes' rule, and ends with modern topics such as variable selection in regression, generalized linear mixed effects models, and semiparametric copula estimation. Numerous examples from the social, biological and physical sciences show how to implement these methodologies in practice. Monte Carlo summaries of posterior distributions play an important role in Bayesian data analysis. The open-source R statistical computing environment provides sufficient functionality to make Monte Carlo estimation very easy for a large number of statistical models and example R-code is provided throughout the text. Much of the example code can be run ``as is'' in R, and essentially all of it can be run after downloading the relevant datasets from the companion website for this book. Peter Hoff is an Associate Professor of Statistics and Biostatistics at the University of Washington. He has developed a variety of Bayesian methods for multivariate data, including covariance and copula estimation, cluster analysis, mixture modeling and social network analysis. He is on the editorial board of the Annals of Applied Statistics.

Keywords

informatietechnologie --- methodologieën --- database management --- Information systems --- Social sciences (general) --- Operational research. Game theory --- statistisch onderzoek --- speltheorie --- econometrie --- operationeel onderzoek --- sociale wetenschappen --- Quantitative methods (economics) --- Statistical science --- stochastische analyse --- Distribution (Probability theory. --- Mathematical statistics. --- Social sciences --- Computer science. --- Econometrics. --- Methodology. --- Probability Theory and Stochastic Processes. --- Operations Research, Management Science. --- Statistical Theory and Methods. --- Methodology of the Social Sciences. --- Probability and Statistics in Computer Science. --- Mathematics --- Statistical inference --- Statistics, Mathematical --- Statistics --- Probabilities --- Sampling (Statistics) --- Distribution functions --- Frequency distribution --- Characteristic functions --- Economics, Mathematical --- Informatics --- Science --- Statistical methods --- Bayesian statistical decision theory --- Data analysis --- Bayesian statistical decision theory. --- Statistical methods. --- Mathematical statistics --- Programming --- Probabilities. --- Operations research. --- Management science. --- Statistics . --- Social sciences. --- Behavioral sciences --- Human sciences --- Sciences, Social --- Social science --- Social studies --- Civilization --- Statistical analysis --- Statistical data --- Econometrics --- Quantitative business analysis --- Management --- Problem solving --- Operations research --- Statistical decision --- Operational analysis --- Operational research --- Industrial engineering --- Management science --- Research --- System theory --- Probability --- Combinations --- Chance --- Least squares --- Risk --- Statistique bayésienne --- Social sciences - Statistical methods --- Statistics.

Listing 1 - 7 of 7
Sort by