Narrow your search

Library

KBR (1)

KU Leuven (1)


Resource type

dissertation (1)


Language

English (1)


Year
From To Submit

2009 (1)

Listing 1 - 1 of 1
Sort by

Dissertation
Relation between molecular structure and function of fructosyltransferases in plants
Authors: ---
ISBN: 9789086492602 Year: 2009 Publisher: Leuven Katholieke Universiteit Leuven. Faculteit Wetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Deze thesis behandeld de kristallografische studie van enzymen van de glycoside hydrolase familie 32 (GH32) die belangrijk zijn in het sucrose en fructan metabolisme van planten. In het verleden werden reeds de driedimensionale (3D) structuren van een fructan exohydrolase (1-FEH IIa van C. intybus ) en van een celwand invertase (AtcwINV1 van A. thaliana ) opgelost. Om verder inzicht te krijgen in de specifieke verschillen tussen fructan exohydrolases en invertases werden hun complexen gegenereerd met verschillende substraten en inhibitoren. Daarmee kon onderzocht worden hoe deze moleculen exact gebonden zijn in de katalytische site en welke aminozuren een sleutelrol spelen in de substraatspecificiteit van de enzymen. De 3D structuren van 1-FEH IIa in complex met zijn substraat (1-kestose) en zijn inhitoren (fructose, DIM en sucrose) geven meer details waarom 1‑kestose een goed substraat is van 1-FEH IIa, terwijl sucrose een inhibitor is van het enzym. Daarnaast werden de 3D structuren opgelost van enkele sucrose/AtcwINV1 complexen. Deze toonden aan dat er verschillende bindingsmodi bestaan voor sucrose in GH32 enzymen en op welke manier de sucrose molecule gestabilizeerd kan worden in de actieve site. De 3D structuren van de 1-FEH IIa en AtcwINV1 complexen samen verschaffen zo belangrijke informatie omtrent de aminozuren betrokken in het complexe mechanisme van sucrose en fructan afbraak. Naast het werk op fructan exohydrolases en invertases, die hydrolases zijn, was het mogelijk om de eerste 3D structuur op te lossen van een plant enzym dat instaat voor de fructan biosynthese (FBE): 6-SFT van Pachysandra terminalis (Pt6SFT). Vervolgens werden het Pt6SFT/1-kestose complex en het Pt6SFT/ 6‑kestose complex opgelost. In dit laatste complex kon de acceptor bindingsplaats van het enzym gevisualiseerd worden. Op deze manier werden de specifieke aminozuren geïdentificeerd die een sleutelrol spelen in de acceptor specificiteit van Pt6SFT. Tenslotte, was het mogelijk de structuur van een tweede FBE te ontrafelen: een 1-SST van C. intybus . 1-FFT van hetzelfde species kon gekristalliseerd worden. Beide enzymen zijn sleutelenzymen in het inuline metabolisme van witloof. De structurele data uit deze thesis, sequentie alignments en mutagenese experimenten, maakte het mogelijk een model te ontwikkelen om de functionaliteit van plant GH32 enzymen te voorspellen, gebaseerd op hun aminozuursequentie. This thesis focuses on the structure determination and analysis of different enzymes within the glycoside hydrolase family 32 (GH32), which are important in sucrose and fructan metabolism in plants. Earlier, the 3D structures of a fructan exohydrolase (1‑FEH IIa from C. intybus ) and a cell wall invertase (AtcwINV1 from A. thaliana ) could be resolved. To gain further insights into the specific differences between fructan exohydrolases and invertases, the complexes with their substrates and inhibitors were generated to clarify how the molecules are exactly bound in the active site and which amino acid residues play a key role in the substrate specificity of the enzymes. The 3D structures of 1-FEH IIa in complex with its substrate (1‑kestose) and its inhibitors (fructose, DIM and sucrose) gave more details why 1‑kestose is a substrate of 1-FEH IIa, while sucrose acts as an inhibitor. In addition, several sucrose/AtcwINV1 complexes were resolved, showing different binding modi for sucrose in GH32 enzymes and how the sucrose molecule is stabilized in the active site. The 3D structures of these complexes together provide important information on the amino acid residues involved into the complex mechanism of sucrose and fructan degradation. Next to the work on FEHs and invertases, which are hydrolases, it was possible to resolve the first 3D structure of a plant fructan biosynthetic enzyme (FBE): a 6-SFT of Pachysandra terminalis (Pt6SFT). In addition, two 6-SFT complexes could be generated: a 1‑kestose and a 6‑kestose bound complex. The latter complex revealed the acceptor binding site of the enzyme, providing information on the amino acid residues important in the determination of its acceptor specificity. Finally, it was also possible to resolve the 3D structure of 1-SST of C. intybus and to crystallize 1-FFT of the same species, both key enzymes in the inulin metabolism of chicory roots. Combining the structural data, multiple sequence alignments and the mutagenesis experiments, a model has been put forward to predict the functionality of plant GH32 enzymes, based on their amino acid sequence.

Listing 1 - 1 of 1
Sort by