Narrow your search

Library

KU Leuven (12)

KBR (5)


Resource type

dissertation (12)


Language

Dutch (7)

English (5)


Year
From To Submit

2009 (12)

Listing 1 - 10 of 12 << page
of 2
>>
Sort by

Dissertation
Intelligente muziekselectie met behulp van pattern mining.
Authors: --- --- ---
Year: 2009 Publisher: Leuven K.U.Leuven. Faculteit Ingenieurswetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Dissertation
Modelleren van strategische multiplayer spellen.
Authors: --- ---
Year: 2009 Publisher: Leuven K.U.Leuven. Faculteit Ingenieurswetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Dissertation
Strategieën leren uit spelregels.
Authors: --- --- ---
Year: 2009 Publisher: Leuven K.U.Leuven. Faculteit Ingenieurswetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Dissertation
Biclustering van ijle, niet-binaire matrices onder beperkingen.
Authors: --- ---
Year: 2009 Publisher: Leuven K.U.Leuven. Faculteit Ingenieurswetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Dissertation
Samenwerkende agenten slaan alarm.
Authors: --- --- ---
Year: 2009 Publisher: Leuven K.U.Leuven. Faculteit Ingenieurswetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Dissertation
Breeding logic.
Authors: --- --- --- ---
Year: 2009 Publisher: Leuven K.U.Leuven. Faculteit Ingenieurswetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Dissertation
Trading expressivity for efficiency in statistical relational learning.
Authors: --- --- --- --- --- et al.
ISBN: 9789460180316 Year: 2009 Publisher: Leuven K.U.Leuven. Faculteit Ingenieurswetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Statistical relational learning (SRL) combines state-of-the-art statistical modeling with relational representations. It thereby promises to provide effective machine learning techniques for domains that cannot adequately be described using a propositional representation. Driven by new applications in which data is structured, interrelated, and heterogeneous, this area of machine learning has recently received increasing attention. However, combining statistical modeling and relational representations also poses new challenges. There is a trade-off between the expressivity of a machine learning formalism and its computational efficiency, as a higher expressivity entails a larger search space during learning. Propositional machine learning techniques are at one end of this trade-off, while approaches that combine the full power of statistical and relational learning are at the other end. In this thesis, we present a collection of simple SRL techniques that focus on computational efficiency rather than maximum expressivity, and thereby occupy an intermediate position in the outlined expressivity-efficiency trade-off. The thesis has three main contributions. We first introduce dynamic propositionalization approaches, which provide a simple but principled integration of relational and statistical learners. Dynamic propositionalization is shown to outperform more traditional static propositionalization approaches, while maintaining computational efficiency. A second part presents Markov models for relational sequences, where sequence elements can be logical atoms or complete logical interpretations. By restricting attention to fully observable data and employing a Markov assumption, inference and learning in the resulting formalisms is significantly easier than in more general SRL systems. In a final part, we present two structured probabilistic models that are tailored to particular application domains, namely haplotype reconstruction and activity recognition. These two domains could be modeled using general-purpose statistical relational sequence models; however, the restriction to a particular domain again allows us to derive more efficient special-purpose inference and learning algorithms. The approaches presented throughout the thesis are evaluated in several relational real-world domains, including structure-activity prediction for chemical compounds, web page classification, modeling user behavior in mobile phone networks, and modeling massively multiplayer online games. The field of machine learning is concerned with making predictions based on known examples. For instance, a computer could learn to automatically classify e-mail messages as spam or legitimate messages, based on a number of examples provided by the user. Today, there are a variety of application domains for machine learning. Examples include predicting the biological properties of molecules, applications in information retrieval from the world wide web, or recognizing faces from camera images. Many complex learning tasks have two important properties: 1) the data under consideration is richly structured, such as chemical molecules or the graph structure of the world wide web, and 2) information is often of an uncertain/probabilistic nature. These two issues are addressed in the field of statistical relational learning, which combines relational techniques that can handle structured data with statistical modeling. In this thesis, we present a collection of simple statistical relational learning approaches. Compared to other techniques developed in the field, the resulting systems are slightly less powerful, but much faster and thus applicable to larger data collections. The thesis is organized into three parts, in which we consider different learning settings. In a first part, the goal is to classify individual data items. Techniques developed for this setting are applied to predicting biological properties of molecules. In a second part, we consider modeling sequences of data items. This is relevant for modeling processes that unfold over time, where the state of the process at any given time is structured. As an example domain, we consider modeling the state of massively multiplayer online games, in which a large number of players interact in a structured way. Finally, a third part of the thesis discusses learning approaches that are tailored to particular application domains. By exploiting the specific domain structure, the resulting techniques are significantly faster than general-purpose machine learning tools that could also be applied.


Dissertation
The use of domain knowledge in reinforcement learning.

Loading...
Export citation

Choose an application

Bookmark

Abstract

Reinforcement Learning ofte `leren uit beloningen' is de tak van kunstma tige intelligentie die bestudeert hoe agenten optimaal gedrag kunnen ler en in sequentiele beslissingsproblemen, waar het soms pas na enkele acti es duidelijk wordt wat de waarde van een vorige beslissing was. Dit lere n gebeurt door exploratie in de omgeving. In de meeste klassieke belonin gsleertechnieken wordt de omgeving als een zwarte doos bekeken waarvan n iets bekend is over het mogelijke gedrag, en kan het enkel door voldoend e exploratie duidelijk worden welke beslissingen welke gevolgen hebben. In veel domeinen is er echter allerhande expertkennis over de achterligg ende processen beschikbaar. Het is aannemelijk dat het gebruik van deze informatie de leertaak drastisch kan vereenvoudigen. Het eerste deel van deze thesis onderzoekt enkele manieren waarop dergel ijke kennis kan gebruikt worden om het leerproces te versnellen. Dit omv at onder andere het geval waarin er een volledig en correct model van de omgeving gegeven is en een manier om verschillende toestanden en acties te behandelen alsof ze identiek zijn. We introduceren twee nieuwe algor itmes, het eerste lost op een efficiente manier een gegeven sequentieel beslissingsprobleem op, het tweede gebruikt een afstandsmaat tussen toes tand-beslissingsparen om een opdeling van de omgeving te maken, wat leid t tot een grote reductie in de grootte van het probleem zonder een grote fout te introduceren. In het tweede deel van dit werk concentreren we ons op problemen waarbij extra informatie over het domein enkel voorhanden is met een kost. Meer informatie kan tot een beter gedrag leiden, maar zal een hogere kost me t zich meebrengen. In dit deel van de thesis zal de balans tussen kost e n waarde van informatie bestudeerd worden, zowel voor gewone numerieke v oorspellingstaken als voor sequentiele beslissingsproblemen. Drie nieuwe algoritmes worden geintroduceerd die

Listing 1 - 10 of 12 << page
of 2
>>
Sort by