Narrow your search

Library

KU Leuven (3)

ULiège (3)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

VDIC (2)

VIVES (2)

More...

Resource type

book (2)

dissertation (1)


Language

English (3)


Year
From To Submit

2008 (3)

Listing 1 - 3 of 3
Sort by

Dissertation
Phytostimulatory effect of Rhizobium and plant growth promoting Rhizobacteria in common bean (Phaseolus vulgaris L.) interaction
Authors: ---
ISBN: 9789088260582 Year: 2008 Volume: 807 Publisher: Leuven Katholieke Universiteit Leuven

Loading...
Export citation

Choose an application

Bookmark

Abstract

De symbiose tussen planten van de familie Leguminosae en sommige bacteriën wordt gekenmerkt door de vorming van nieuwe plantorganen, de zogenoemde nodules of wortelknolletjes, op de wortels of stengel. De cellen van deze nieuwe organen worden geïnfecteerd door de specifieke microsymbionten. De best gekende symbiotische bacteriën behoren tot de groep van de Rhizobiaceae met de genera Rhizobium, Bradyrhizobium, Sinorhizobium (Ensifer), Mesorhizobium, Azorhizobium , en Allorhizobium , collectief rhizobia genoemd. Vlinderbloemige planten zijn een belangrijke schakel in duurzame landbouw. Symbiotische stikstoffixatie (SNF), door de interactie van vlinderbloemige planten en rhizobia, draagt in belangrijke mate bij aan de stikstofvoeding van deze planten en als dusdanig tot de stikstofhuishouding in plantaardige productiesystemen. De gewone boon ( Phaseolus vulgaris L.) is wereldwijd het belangrijkste vlinderbloemige gewas voor humane consumptie en traditioneel van bijzonder belang in grote delen van Centraal- en Zuid-Amerika en Afrika. Symbiotische stikstoffixatie bij bonenteelt is echter weinig efficiënt in vergelijking met andere vlinderbloemige gewassen. Het opzet van deze studie was het identificeren en kwantificeren van gunstige interacties tussen boongenotypes, rhizobia en plantengroeibevorderende bacteriën (PGPR). Hiertoe werden verschillende rhizobia-PGPR combinaties geëvalueerd via inoculatie van twee boongenotypes die courant gebruikt worden door de boeren in Cuba. Nodulatie- en plantgroeiparameters worden gunstig beïnvloed door co-inoculatie van gewone boon met Rhizobium-Azospirillum of Rhizobium-Azotobacter , en dit zowel in potexperimenten als onder veldcondites. Onder veldcondities werd echter duidelijk een effect van het plantgenotype waargenomen wat betreft groei en opbrengst. De combinatie Rhizobium-Azospirillum en de bemestingscontrole leverden de beste resultaten op voor de ICA Pijao variëteit, terwijl voor de BAT-304 variëteit de beste resultaten bekomen werden met enkelvoudige Rhizobium inoculatie. Morfologische en genetische karakterisatie van bacteriën geïsoleerd uit boonvelden op Cuba lieten toe een, weliswaar beperkt, beeld te geven van de bacteriële diversiteit. Sommige van deze geïsoleerde bacteriën werden getest voor hun interactie met de gewone boon. Geïsoleerde Rhizobium stammen bleken een aantal interessante eigenschappen, zoals vroege nodulatie, te vertonen. Bovendien werden in co-inoculatietesten gunstige effecten waargenomen, wat wijst op een compatibiliteit tussen rhizobia en sommige PGPR in de interactie met de gewone boon. De genetische karakterisatie van de bacteriële isolaten uit de Cubaanse bodems leidde via 16SrDNA sequenering tot de identificatie van 8 genera: Agr obacterium, Rhizobium, Ochrobactrum, Sphingomonas, Stenotrophomonas, Bacillus, Brevibacillus en Paenibacillus . In stalen genomen van nodules vertoonden 37,5% van de isolaten 100% gelijkenis met hetzij Agrobacterium tumefaciens of Rhizobium species. Twee Rhizobium species werden geïdentificeerd, met name Rhizobium et li en Rhizobium tropici . In een laatste deel werd een bijdrage geleverd in het zoeken naar plantengenen die in de interactie van de gewone boon met respectievelijk Rhizobium , een pathogene schimmel ( Fusarium solani f. sp. phaseoli ), en een controlebehandeling, differentiëel tot expressie komen. Hiertoe werd de techniek van “cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP)” gebruikt. In silico analyse van een aantal geïdentificeerde DNA fragmenten leverde een aantal interessante “transcript derived fragments (TDFs)” op. DNA sequentie-analyse van een aantal van deze TDFs liet toe verwantschap op te sporen met reeds bekende genen. Deze verwante genen bleken betrokken te zijn in stressresponses en koolhydraatmetabolisme. The symbiosis between plants of the Leguminosae family and prokaryotic partners is typically characterized by the formation of specialized organs, called nodules, on plant roots or stems that are invaded by the specific microsymbionts. These include the well-known alpha-proteobacterial group of Rhizobiaceae containing the genera Rhizobium, Bradyrhizobium, Sinorhizobium ( Ensifer ), Mesorhizobium, Azorhizobium, and Allorhizobium , collectively referred as rhizobia. Legumes play a crucial role in sustainable agriculture. Symbiotic nitrogen fixation (SNF) through interaction between legumes and rhizobia, contributes to nitrogen (N) nutrition of most legumes and legume cropping systems. Common bean ( Phaseolus vulgaris L.) is the most important legume for direct human consumption worldwide and particularly in many parts of Latin America and Africa. However, the application of SNF in common bean in the field is often low compared to the nitrogen fixing capacity of beans under optimal conditions and as compared to the amounts of nitrogen fixed by other legumes. The aim of our study is to identify, quantify and enhance the phytostimulatory effect of the interplay between Rhizobium , bean genotypes and plant growth promoting rhizobacteria (PGPR) under different growth conditions and to contribute to the understanding of the molecular mechanisms involved in the Rhizobium -bean interaction. To reach this objective, combinations of Rhizobium -PGPR were evaluated under different growth conditions in Cuba using two local bean genotypes. The nodulation and plant growth parameters were significantly stimulated with the combination of Rhizobium-Azospirillum and Rhizobium-Azotobacter under pot experiment condition, as well as in a field trial. Variations among genotypes were observed for growth parameters and yield in a second field trial. The combination Rhizobium-Azospirillum and the fertilizer treatments showed the best result in yield for ICA Pijao beans, while for BAT-304 beans the best result was obtained with the single Rhizobium inoculation. Secondly, the morphological and genetic characterization of bacterial isolates from Cuban bean fields, as well as the phenotypic characterization of Cuban Rhizobium isolates under controlled and field conditions, demonstrate the biodiversity of beneficial microbes in the common bean rhizosphere and the stimulatory effect of compatible interactions between common bean genotypes and Rhizobium strains. The genetic characterization of isolated bacterial strains form Cuban soils using 16S rDNA sequencing revealed 8 groups of bacteria belonging to the genera: Agrobacterium, Rhizobium, Ochrobactrum, Sphingomonas, Stenotrophomonas, Bacillus, Brevibacillus and Paenibacillus . In nodule samples, 37.5% of isolates were 100% similar to Agrobacterium tumefaciens or Rhizobium species. This study allowed the identification of two species of Rhizobium isolates ( Rhizhobium etli and Rhizobium tropici ) in nodule samples. In nodulation tests Agrobacterium isolates were unable to nodulate the original host. The phenotypic characterization showed the stimulation of nodulation parameters and the N fixation through the native Rhizobium isolates at early stage of common bean plants. Under field trial conditions, the nodulation, growth parameters and yield were stimulated significantly for ICA Pijao as compared with BAT-304 upon inoculation with the isolated Rhizobium strains. Furthermore, genes differentially expressed during the bean root interaction with Rhizobium etli CNPAF512, infection with Fusarium solani f. sp. phaseoli and a control respectively , were identified using the cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) technique. In silico analysis was used to determine the differential expression profiles of transcript derived fragments (TDFs). Several TDFs were isolated, cloned, sequenced and the obtained DNA sequences were compared with sequences in the GenBank database. The sequences retrieved revealed homology with genes encoding stress/defense and cell metabolism functions for Rhizobium treatments, as well as stress/defense functions for the Fusarium condition. The results outlined in this study demonstrate the potential of selection for efficient associations among bean genotypes, rhizobia and plant growth promoting rhizobacteria in order to achieve the increase of SNF in common bean under local agro-ecosystems, as well as increase our insight of the molecular dialogue in common bean-rhizobia interaction. However, these studies should be expanded using more bean genotypes and bacterial combinations in different environmental conditions, in order to provide recommendations to farmers. Biologische stikstoffixatie (BNF) is bij uitstek een proces dat bijdraagt tot een meer duurzame landbouw. Biologische stikstoffixatie in symbiose (SNF) met vlinderbloemige planten, zoals bonen, wordt daarom reeds decennia toegepast, voornamelijk in landen die om economische redenen weinig toegang hebben tot chemische meststoffen. Symbiose verwijst naar een interactie tussen de wortels, en in sommige gevallen de stengels, van vlinderbloemige planten enerzijds en bacteriën die collectief worden aangeduid als rhizobia anderzijds. In een aantal gevallen voorziet dit proces in de volledige stikstofbehoefte van de plant. De gewone boon, Phaseolus vulgaris L., is wereldwijd de belangrijkste vlinderbloemige plant voor humane consumptie, en van groot belang in grote delen van Zuid- en Centraal-Amerika en Afrika. De symbiotische stikstoffixatie bij boon is echter weinig efficiënt onder veldcondities, in vergelijking met andere vlinderbloemige gewassen. Daarentegen, onder goed gecontroleerde omstandigheden kan SNF bij boon tot 80% van de stikstofbehoefte van de plant voorzien. Dit wijst enerzijds op het genetisch potentiëel voor efficiënte stikstoffixatie en anderzijds op het voorkomen van ongunstige omgevingsfactoren om dit potentiëel effectief te realiseren. Het doctoraatsonderzoek beoogde de interactie tussen boongenotypes, rhizobia en plantengroeibevorderende rhizobacteriën (PGPR) te bestuderen en te kwantificeren, en dit met het oog op het verbeteren van de symbiotische stikstoffixatie. Er werd hierbij uitgegaan van actuele landbouwsystemen in Cuba. Hiertoe werden verschillende rhizobia-PGPR combinaties geëvalueerd via inoculatie van twee boongenotypes die courant gebruikt worden door de boeren in Cuba. Nodulatie- en plantgroeiparameters worden gunstig beïnvloed door co-inoculatie van gewone boon met Rhizobium - Azospirillum of Rhizobium-Azotobacter , en dit zowel in potexperimenten als onder veldcondites. Onder veldcondities werd echter duidelijk een effect van het plantgenotype waargenomen wat betreft groei en opbrengst. De combinatie Rhizobium-Azospirillum en de bemestingscontrole leverden de beste resultaten op voor de ICA Pijao variëteit, terwijl voor de BAT-304 variëteit de beste resultaten bekomen werden met enkelvoudige Rhizobium inoculatie. Morfologische en genetische karakterisatie van bacteriën geïsoleerd uit boonvelden op Cuba lieten toe een, weliswaar beperkt, beeld te geven van de bacteriële diversiteit. Sommige van deze geïsoleerde bacteriën werden getest voor hun interactie met de gewone boon. Geïsoleerde Rhizobium stammen bleken een aantal interessante eigenschappen, zoals vroege nodulatie, te vertonen. Bovendien werden in co-inoculatietesten gunstige effecten waargenomen, wat wijst op een compatibiliteit tussen rhizobia en sommige PGPR in de interactie met de gewone boon. De genetische karakterisatie van de bacteriële isolaten uit de Cubaanse bodems leidde via 16SrDNA sequenering tot de identificatie van 8 genera: Agrobacterium, Rhizobium, Ochrobactrum , Sphingomonas, Stenotrophomonas, Bacillus, Brevibacillus en Paenibacillus . Twee Rhizobium species werden geïdentificeerd, met name Rhizobium etli en Rhizobium tropici . In een laatste deel werd een bijdrage geleverd in het zoeken naar plantengenen die in de interactie van de gewone boon met respectievelijk Rhizobium , een pathogene schimmel ( Fusarium solani f. sp. phaseoli ), en een controlebehandeling, differentiëel tot expressie komen. Hiertoe werd de techniek van “cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP)” gebruikt. In silico analyse van een aantal geïdentificeerde DNA fragmenten leverde een aantal interessante “transcript derived fragments (TDFs)” op. DNA sequentie-analyse van een aantal van deze TDFs liet toe verwantschap op te sporen met reeds bekende genen. Deze verwante genen bleken betrokken te zijn in stressresponses en koolhydraatmetabolisme. International emphasis on environmentally sustainable development with the use of renewable resources is likely to focus attention on the potential role of biological nitrogen (N) fixation (BNF) in supplying N for agriculture to counteract the indiscriminate use of nitrogenous fertilizers, which has resulted in unacceptable levels of pollution to groundwater and the atmosphere, low crop yields, decrease in the protein content of food and declined soil fertility. It is largely known that legumes play a crucial role in sustainable agriculture. Symbiotic N fixation (SNF) through interaction between legumes and micro-organisms collectively named rhizobia, contributes to N nutrition of most legumes and legume cropping systems. Common bean ( Phaseolus vulgaris L.) is the most important legume for direct human consumption worldwide and particularly in many parts of Latin America and Africa. However, the application of SNF in common bean in the field is often low compared to the N fixing capacity of beans under optimal conditions and as compared to the amounts of N fixed by other legumes. This doctoral thesis aims to identify, quantify and enhance the phytostimulatory effect of the interplay between Rhizobium , bean genotypes and plant growth promoting rhizobacteria (PGPR) under different growth conditions and to contribute to the understanding of the molecular mechanisms involved in the Rhizobium -bean interaction. Combinations of Rhizobium -PGPR were evaluated under different growth conditions in Cuba using two local bean genotypes. The nodulation and plant growth parameters were significantly stimulated with the combination of Rhizobium-Azospirillum and Rhizobium-Azotobacter under pot-controlled condition, as well as in a field trial. The combination Rhizobium-Azospirillum and the fertilizer treatments showed the best result in yield for ICA Pijao beans, while for BAT-304 beans the best result was obtained with the single Rhizobium inoculation. Secondly, the morphological and genetic characterization of bacterial isolates from Cuban intercropping bean fields, demonstrate the biodiversity of beneficial microbes in the common bean-rhizosphere, revealing 8 groups of bacteria detected by 16S rDNA belonging to the genera: Agrobacterium, Rhizobium , Ochrobactrum, Sphingomonas, Stenotrophomonas, Bacillus, Brevibacillus and Paenibacillus . This study allowed the identification of two species of Rhizobium isolates ( Rhizhobium etli and Rhizobium tropici ) in nodule samples. In nodulation tests Agrobacterium isolates were unable to nodulate the original host. The phenotypic characterization of Rhizobium isolates under growth controlled and field conditions showed stimulatory effect of compatible interactions between common bean genotypes and Rhizobium strains. The nodulation parameters and the N fixation were increased through the native Rhizobium isolates at early stage of common bean plants and under field conditions the nodulation, growth parameters and yield were stimulated significantly for ICA Pijao as compared with BAT-304 upon inoculation with the isolated Rhizobium strains. However, Rhizobium tropici isolated strain RL-2 showed the best result in yield as compared with the control, reference strain CIAT899 and fertilizer treatments. Furthermore, genes differentially expressed during the root interaction with Rhizobium etli CNPAF512 in common bean (BAT-477) were identified using the cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) technique, having as control conditions the infection with Fusarium solani f. sp. phaseoli and a treatment without rhizobia inoculation or Fusarium infection . In silico analysis was used to determine the differential expression profiles of transcript derived fragments (TDFs). The sequences retrieved revealed homology with genes encoding stress/defense and cell metabolism functions for Rhizobium treatments, as well as stress/defense functions for the Fusarium condition. However the studies should continued to verify the genes detected by qRT-PCR. The results outlined in this study demonstrate the potential of selection for efficient associations among bean genotypes, rhizobia and plant growth promoting rhizobacteria in order to achieve SNF in common bean under local agro-ecosystems, as well as to increase our insight in molecular signal transduction pathways in Rhizobium -bean interplay.

Agrobacterium : from biology to biotechnology
Authors: ---
ISBN: 1281141291 9786611141295 0387722904 0387722890 1441924736 Year: 2008 Publisher: New York : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Agrobacterium is the only cellular organism on Earth that is naturally capable of transferring genetic material between the kingdoms of life, from prokaryotes to eukaryotes. Studies have uncovered a wealth of information on the process of Agrobacterium-mediated genetic transformation and on the bacterial and host cell factors involved in the infection. Agrobacterium has been shown to genetically transform, under laboratory conditions a large number of plant species and numerous non-plant organisms, indicating the truly basic nature of the transformation process. It is therefore not surprising that Agrobacterium and the genetic transformation itself have also become the focus of numerous ethical and legal debates. ‘Agrobacterium’ is a comprehensive book on Agrobacterium research, including its history, application, basic biology discoveries, and effects on human society. Although the book largely focuses on providing a detailed review of virtually all molecular events of the genetic transformation process, it also provides coverage of ethical and legal issues relevant to the use of Agrobacterium as a "genetic transformation machine". The result is an all-inclusive text which readers—including scientists and students involved in plant genetic engineering—will find useful as a reference source for all major aspects of the Agrobacterium-mediated genetic transformation of plant and non-plant organisms. About the Editors: Dr. Tzvi Tzfira is an Assistant Professor in the Department of Molecular, Cellular, and Developmental Biology at the University of Michigan. Dr. Vitaly Citovsky is a Professor in the Department of Biochemistry and Cell Biology at Stony Brook University.

Nitrogen-fixing leguminous symbioses
Author:
ISBN: 1281206113 9786611206116 1402035489 9781402035456 1402035454 9781402035487 Year: 2008 Publisher: Dordrecht : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is the self-contained final volume of a comprehensive seven-volume series covering the basic and applied science relating to nitrogen fixation. It addresses the most important nitrogen-fixing symbiosis of all – that between legumes and their root-nodule bacteria – and therefore deals with the properties and behaviour of both macro- and micro-symbiont. The coverage is comprehensive, beginning with the extent of the symbiosis and how it may have arisen in the geological past. It considers how legumes select the root-nodule bacteria they allow to form nodules on their roots and the intricate series of signals to be exchanged between legume and bacteria for infection to occur. The immense progress in understanding the genetic systems in the bacteria necessary for nodulation is now being replicated in a rapidly increasing understanding of the required systems in the legumes. The cell biology of the processes of both infection and nodule development is analysed and leads to a parallel assessment of the biochemical processes in carbon and nitrogen metabolism required for successful nitroogen fixation by the symbiotic bacteroid. Attention is given to the ways in which the nodule has solved the conundrum of providing enough O2 for energy generation to drive nitrogen fixation without either inactivating the O2-sensitive nitrogenase or creating damaging reactive oxygen species. This volume also covers the basic physiology of the variety of root-nodule bacteria infecting legumes, as well as looking at the renewed controversy about the chemical form(s) of nitrogen exported to the legume. Successful exploitation of the legume symbiosis in agriculture, horticulture, and forestry demands an understanding of the ecology of the root-nodule bacteria – particularly what makes for a successful inoculant strain for legume introduction to agricultural systems. Then, there is a requirement for inoculation technology to both successfully deliver viable bacteria to the root surface and facilitate nodulation. These practical aspects are thoroughly covered in this volume, with a final chapter assessing how the massive amount of recent information can be exploited in matching host and microsymbiont for the wide variety of environments in which they are needed in our production systems.

Listing 1 - 3 of 3
Sort by