Listing 1 - 10 of 138 | << page >> |
Sort by
|
Choose an application
To adequately describe complex spatio-temporal processes that occur in multi-cellular organisms, a class of models is required that simultaneously takes into account differences between individual cells as well as their ability to communicate and interact with one another and their environment. Single-cell-based models form a framework that allows for the explicit incorporation of different properties of individual cells, but at the same time enables all cells to act together as one collective body. This leads ultimately to more biologically realistic models of heterogeneous tissues and multi-cellular organisms and allows for a better understanding of the principles underlying the complex biological processes occurring during the formation, growth and maintenance of multi-cellular bodies. The aim of this book is to assemble a collection of different mathematical and computational models and techniques that focus on individual cells, cell processes and cell behaviour, that are also suitable to address problems on the multi-cellular or tissue scale. We would like to focus the level of the book equally to students starting their research in the field of mathematical biology and to scientists already modelling multi-cellular processes. Therefore, our intention is to include in this book a detailed description of each model and an extensive review of suitable biological and medical applications.
Biomathematics. Biometry. Biostatistics --- Biology --- biomathematica --- biologie --- biometrie
Choose an application
Biomathematics. Biometry. Biostatistics --- Biology --- biomathematica --- biologie --- biometrie
Choose an application
Biomathematics. Biometry. Biostatistics --- Mathematical statistics --- Biometry. --- Biométrie --- Biométrie
Choose an application
Volume one of this two volume sequence focuses on the basic characterization of known protein structures as well as structure prediction from protein sequence information. The 11 chapters provide an overview of the field, covering key topics in modeling, force fields, classification, computational methods, and struture prediction. Each chapter is a self contained review designed to cover (1) definition of the problem and an historical perspective, (2) mathematical or computational formulation of the problem, (3) computational methods and algorithms, (4) performance results, (5) existing software packages, and (6) strengths, pitfalls, challenges, and future research directions.
Biomathematics. Biometry. Biostatistics --- Genetics --- General biophysics --- biofysica --- proteomics --- bio-informatica --- biometrie --- proteïnen
Choose an application
These lecture notes are based on several courses and lectures given at di?erent places (University Pierre et Marie Curie, University of Bordeaux, CNRS research groups GRIP and CHANT, University of Roma I) for an audience of mathema- cians.ThemainmotivationisindeedthemathematicalstudyofPartialDi?erential Equationsthatarisefrombiologicalstudies.Among them, parabolicequations are the most popular and also the most numerous (one of the reasonsis that the small size,atthecelllevel,isfavorabletolargeviscosities).Manypapersandbookstreat this subject, from modeling or analysis points of view. This oriented the choice of subjects for these notes towards less classical models based on integral eq- tions (where PDEs arise in the asymptotic analysis), transport PDEs (therefore of hyperbolic type), kinetic equations and their parabolic limits. The?rstgoalofthesenotesistomention(anddescribeveryroughly)various ?elds of biology where PDEs are used; the book therefore contains many ex- ples without mathematical analysis. In some other cases complete mathematical proofs are detailed, but the choice has been a compromise between technicality and ease of interpretation of the mathematical result. It is usual in the ?eld to see mathematics as a blackboxwhere to enter speci?c models, often at the expense of simpli?cations. Here, the idea is di?erent; the mathematical proof should be close to the natural' structure of the model and re?ect somehow its meaning in terms of applications. Dealingwith?rstorderPDEs,onecouldthinkthatthesenotesarerelyingon the burden of using the method of characteristics and of de?ning weak solutions. We rather consider that, after the numerous advances during the 1980s, it is now clearthat solutionsinthesenseofdistributions'(becausetheyareuniqueinaclass exceeding the framework of the Cauchy-Lipschitz theory) is the correct concept.
Choose an application
Structural requirements constrain the evolution of biological entities at all levels, from macromolecules to their networks, right up to populations of biological organisms. Classical models of molecular evolution, however, are focused at the level of the symbols - the biological sequence - rather than that of their resulting structure. Now recent advances in understanding the thermodynamics of macromolecules, the topological properties of gene networks, the organization and mutation capabilities of genomes, and the structure of populations make it possible to incorporate these key elements into a broader and deeply interdisciplinary view of molecular evolution. This book gives an account of such a new approach, through clear tutorial contributions by leading scientists specializing in the different fields involved.
Biomathematics. Biometry. Biostatistics --- General biophysics --- biofysica --- bio-informatica --- biometrie --- moleculaire biologie
Choose an application
Questo testo si indirizza prima di tutto agli studenti delle Lauree Specialistiche in Biologia delle Università, ma sarà di interesse anche per studenti di Scienze Naturali e Medicina. Gli argomenti trattati includono i piu' classici modelli matematici di fenomeni biologici (dinamica delle popolazioni, diffusione delle malattie infettive, semplici modelli di fisiologia), ma una parte rilevante del testo e' dedicata all'approccio matematico alla teoria dell'evoluzione natuturale. Gli unici prerequisiti richiesti al lettore sono quelli forniti dai corsi di base di Matematica della Laurea triennale in Biologia, Scienze Naturali o Medicina; gli altri strumenti matematici sono discussi nel testo o nei "complementi matematici" che ne formano parte integrante. Sebbene i modelli qui discussi siano essenzialmente in termini di (semplici) equazioni differenziali e dunque deterministici, tesi a descrivere l'evoluzione di quantita' medie, si e' a piu' riprese cercato di mostrare il ruolo delle fluttuazioni nei fenomeni biologici e come esso possa essere tenuto in conto in modo matematicamente semplice.
Biomathematics. Biometry. Biostatistics --- Genetics --- General biophysics --- Human biochemistry --- medische biochemie --- biofysica --- biomathematica --- biochemie --- genetica --- biometrie
Choose an application
Systems biology is defined for the purpose of this study as the understanding of biological network behaviors, and in particular their dynamic aspects, which requires the utilization of mathematical modeling tightly linked to experiment. This involves a variety of approaches, such as the identification and validation of networks, the creation of appropriate datasets, the development of tools for data acquisition and software development, and the use of modeling and simulation software in close linkage with experiment. All of these are discussed in this volume. Of course, the definition becomes ambiguous at the margins, but at the core is the focus on networks, which makes it clear that the goal is to understand the operation of the systems, rather than the component parts. It was concluded that the U.S. is currently ahead of the rest of the world in systems biology, largely because of earlier investment by funding organizations and research institutions. This is reflected in a large number of active research groups, and educational programs, and a diverse and growing funding base. However, there is evidence of rapid development outside the U.S., much of it begun in the last two to three years. Overall, however, the picture is of an active field in the early stages of explosive growth. This volume is aimed at academic researchers, government research agency representatives and graduate students.
Choose an application
The book presents a class of new results in molecular biology for which topological methods and ideas are important. These include: the large-scale conformation properties of DNA; computational methods (Monte Carlo) allowing the simulation of large-scale properties of DNA; the tangle model of DNA recombination and other applications of Knot theory; dynamics of supercoiled DNA and biocatalitic properties of DNA; the structure of proteins; and other very recent problems in molecular biology. The text also provides a short course of modern topology intended for the broad audience of biologists and physicists. The authors are renowned specialists in their fields and some of the new results presented here are documented for the first time in monographic form.
Biomathematics. Biometry. Biostatistics --- Molecular biology --- General biophysics --- biofysica --- bio-informatica --- biometrie --- moleculaire biologie
Choose an application
Written in Alwyn Scott's inimitable style - lucid and accessible - The Nonlinear Universe surveys and explores the explosion of activity in nonlinear science that began in the 1970s and 1980s and continues today. The book explains the wide-ranging implications of nonlinear phenomena for future developments in many areas of modern science, including mathematics, physics, engineering, chemistry, biology, and neuroscience. Arguably as important as quantum theory, modern nonlinear science - and an appreciation of its implications - is essential for understanding scientific developments of the twenty-first century.
Mathematical physics --- Physics --- Biomathematics. Biometry. Biostatistics --- Computer science --- toegepaste wetenschappen --- chaos --- biomathematica --- informatica --- biometrie --- wiskunde --- fysica
Listing 1 - 10 of 138 | << page >> |
Sort by
|