Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Accelerated failure time models for multivariate interval-censored data with flexible distributional assumptions: In this thesis, we have developed several modifications of the accelerated failure time model for the analysis of the multivariate (doubly-)interval-censored data while making only weak distributional assumptions. Chapter 1 introduces several data sets that motivate the developments presented in the thesis. The data sets involve clustered interval-censored and doubly-interval-censored dental observations, possibly right-censored times of recurrent infections, interval-censored AIDS onset times and right-censored breast cancer progression free times obtained in the framework of the multi-center study. In the second part of the thesis, these data sets are used to illustrate the developed methods in particular problems. Chapter 2 reviews briefly several classical survival analysis concepts and introduces the notation used in the thesis. An overview of the regression models for the analysis of event times is given in Chapter 3. We described the Cox's proportional hazards (PH) model and the accelerated failure time (AFT) model as the most popular models in this area. For reasons stated in this chapter, we have chosen for the accelerated failure time model as the basis for all developments in the thesis. In Chapter 4, we discuss the likelihood form for (multivariate) (doubly-)interval-censored data and show several advantages of the Bayesian approach in comparison to maximum-likelihood estimation.. Further, we used the Markov chain Monte Carlo methodology to do the Bayesian estimation. The final chapter of the introductory part of the thesis, Chapter 5, gives an overview of existing methods for the analysis of the interval-censored data and shows in detail a Bayesian analysis of dental multivariate doubly-interval-censored data using a PH model with a piecewise constant baseline hazard function. The main part of the thesis starts with Chapter 6 where we describe two slightly different classes of models for flexible modelling of continuous densities. Firstly, a classical normal mixture is introduced. Secondly, we propose a penalized normal mixture motivated by penalized B-splines as a useful tool to model unknown densities. Both approaches are subsequently used in the AFT models to express either the error density or the density of the random effects. Chapter 7 gives the AFT model for univariate interval-censored data where the error distribution is specified as the penalized normal mixture. The inference is based on the maximum-likelihood paradigm. The model is further extended to allow, not only the mean response, but also the scale of the response to depend on covariates. To handle the multivariate (doubly-)interval-censored data in an elegant manner, we suggest to use the Bayesian approach. Firstly, Chapter 8 gives the AFT model with normal random effects (cluster-specific model) and the distribution of the error term specified as a classical normal mixture. Secondly, Chapter 9 shows the cluster-specific AFT model where the error distribution and, in the case of univariate random effects, also the distribution of the random effects is specified as a penalized normal mixture. In the same chapter we explicitly show and illustrate the usage of the proposed methods for doubly-interval-censored data. Finally, Chapter 10 gives the population-averaged AFT model for paired (doubly-) interval-censored data where the error distribution is given by a bivariate penalized normal mixture. Suggestions for future research are given in Chapter 11. Accelerated failure time models for multivariate interval-censored data with flexible distributional assumptions: In medical research, it is often of interest to analyze the effect of several factors on the time to an event. As an example, the following questions could be posed: "Does the frequency of tooth brushing influence the time to caries, and if so, how much?" or "Does the type of the therapy influence the time until the onset of some disease or infection, and if so, to what extent?" However, to find out whether the event of interest happened or not, it is necessary to perform regular medical or laboratory examinations. Recording the time of the event consists of establishing (1) the last date that the event hadn't occurred yet (e.g., the last dental examination where the tooth was not decayed) and (2) the date that the event occurred (e.g., the first dental examination where the tooth was found to be decayed). Data of this type are called interval-censored. The standard assumption of most statistical analyses is that the observations are independent. However, this does not need to be the case, and especially in oral health applications this assumption is often violated. An example is the joint analysis of caries times of several teeth of the same mouth. Data of this type are called clustered and can be considered as multivariate data. The analysis of the effect of some factors (covariates) on the response (event time in our case) is generally performed using a suitable regression model. That is, some characteristic of the response, often the mean (average response) is expressed as a function of the covariates. One of the regression models for the analysis of censored data is the accelerated failure time (AFT) model. In this model, the mean of the logarithm of the event time is expressed as a linear function of the covariates. The effect of the covariates then consists of decreasing (accelerating) or increasing (decelerating) the expected event time. One of the problems when using any regression models is how to specify the stochastic distribution of the response. Most often, a parametric distribution is chosen for this purpose, e.g., normal (Gaussian) distribution. However, with censored data it is very difficult to evaluate the appropriateness of any parametric distribution. For this reason, we explored several methods on how to specify the distribution of the response in a flexible way. The developed methodologies were applied to the analysis of the emergence and caries times of several permanent teeth, to the onset times of AIDS, to the times to recurrent pyogenic infections for patients with chronic granulomatous disease and to the disease free progression times for patients with early breast cancer.
Choose an application
Most statistical analyses are largely concerned with the appropriateness of the regression model used. However, for the data at hand, an important and often neglected problem concerns the issue of misclassification error, which leads to bias and loss of efficiency in estimation. It is possible to correct for this bias if the misclassification probabilities can be estimated unbiasedly from, for instance, the validation data. In this thesis, frequentist and Bayesian methodologies have been developed to correct for misclassification errors in discrete data, accounting for the uncertainty by which the correction terms are estimated. The main advantage of the Bayesian approach over the frequentist method for misclassification problems is that it allows for conceptually straightforward estimation, utilizing all the available information and providing an elegant way for taking the variability of the correction terms into account. The approaches that have been developed assume that along with the possibly misclassified main data measurements, error-free validation data measurements are available. Parameter estimation is done simultaneously combining information from both measurement processes. Most statistical analyses are largely concerned with the appropriateness of the regression model used. However, for the data at hand, an important and often neglected problem concerns the issue of misclassification error, which leads to bias and loss of efficiency in estimation. It is possible to correct for this bias if the misclassification probabilities can be estimated unbiasedly from, for instance, the validation data. In this thesis, frequentist and Bayesian methodologies have been developed to correct for misclassification errors in discrete data. The main advantage of the Bayesian approach over the frequentist method for misclassification problems is that it allows for conceptually straightforward estimation, utilizing all the available information and providing an elegant way for taking the variability of the correction terms into account. The analysis of caries research, particularly with application to the Signal Tandmobiel® study, revealed that the correction for misclassification error matters and the effect of correction varies depending on the type of the discrete response (binary, ordinal or count), and the associated model assumptions. It has been established that the East-West gradient in caries experience was not influenced by the potential misclassification of the dental examiners.
Choose an application
In verscheidene (bio)-medische studies wordt op verschillende tijdstippen een set variabelen gemeten. Het modelleren van dergelijke multivariaat longitudinale profielen vorm het centrale thema in deze thesis. Uiteenlopende situaties zijn besproken waarin een gezamelijk model nodig is voor de longitudinaal gemeten variabelen. Hoofdstuk 1 geeft een overzicht van gezamelijke modellen. Omwille van verschillende redenen is er in deze thesis geopteerd voor het multivariaat gemengd model (MGM) als gezamelijk model. De belangrijkste zijn dat het MGM kan gehanteerd worden in een discriminant analyse, en dat het MGM in staat is om ongebalanceerde metingen te modelleren en om variabelen van verschillende types te combineren. Een MGM wordt geconstrueerd door eerst voor elk van de longitudinaal gemeten variabelen een univariaat gemengd model te specifiëren. Deze univariaat gemengde modellen worden vervolgens samengevoegd door specificatie van een gezamelijke verdeling voor de subject-specifieke parameters ( random effecten ). In Hoofdstuk 2 wordt in een univariaat longitudinale context het gebruik van gemengde modellen besproken. Metingen van het prostaat specifiek antigen (PSA) als marker voor prostaatkanker zijn gebruikt om aan te tonen dat de groepen in een discriminant analyse kunnen beschreven worden met behulp van verschillende types gemengde modellen, namelijk lineair gemengde en niet-lineair gemengde modellen. In Hoofdstuk 3 is aangetoond dat het gebruik van een MGM kan leiden tot invalide conclusies met betrekking tot de associatiestructuur in multivariaat longitudinale data. Dit is geïllustreerd voor een bivariaat lineair gemengd model dat de longitudinale metingen beschrijft van gehoorsdrempels van twee signaal frequenties. Twee aspecten van de associatiestructuur werden onderscheiden: de associatie van de evolutie, en de evolutie van de associatie. Assumpties met betrekking tot de error componenten in het model, bleken voor beide aspecten een sterke impact te hebben op de bekomen conclusies. Des te meer variabelen gezamelijk worden gemodelleerd in een MGM, des te sneller het vanuit computationeel standpunt onmogelijk wordt om schatters te bekomen voor de parameters in het MGM. Daarom werd in Hoofdstuk 4 een computationele strategie ontwikkeld om hoog-dimensionele MGMs te fitten. De kern van deze nieuwe strategie bestaat uit het fitten van alle mogelijke paarsgewijze gemengde modellen, waardoor de complexiteit van het MGM wordt vermeden. Schatters voor de parameters in het MGM worden bekomen door te middelen over de resultaten van alle paarsgewijzen modellen. Pseudolikelihood theorie wordt gebruikt voor inferentiële doeleinden. Deze nieuwe aanpak, getiteld de paarsgewijze methode , is toepasbaar ongeacht het aantal longitudinaal gemeten variabelen, en ongeacht het type van univariaat gemengd model waaruit het MGM bestaat. Simulatiestudies en analytische resultaten, gepresenteerd in Hoofdstuk 5, geven aan dat de schatters bekomen met de paarsgewijze methode, onvertekend zijn, en dat het efficientieverlies in de meeste praktische situaties beperkt is. Hoofdstuk 6 beschrijft hoe de nieuwe methode is toegepast in een niet-longitudinale setting, met name voor de modellering van multivariaat herhaalde binaire data, afkomstig van een vragenlijst. Door parameters te schatten van een MGM dat zeven univariaat veralgemeend lineaire modellen combineert, is de relevantie van de nieuwe methode voor een set van psychometrische modellen belicht. Hoofdstuk 7 bevat een synthese van verscheidene aspecten uit de thesis. In dit hoofstuk werden longitudinale profielen van vier markers gebruikt om het risico op het verlies van een getransplanteerde nier in te schatten. Op die wijze is dit hoofdstuk een multivariate uitbreiding van de discriminant analyse die voorgesteld is in Hoofdstuk 2. De paarsgewijze methode werd gehanteerd om schatters te bekomen van de parameters in de MGMs die de longitudinale evolutie van de vier markers beschrijven. De analyses tonen aan dat een strategie op basis van een MGM met gecorreleerde markers, de andere classificatiestrategieëen overvleugelt. Die andere strategieën zijn gebaseerd op één enkele marker of op een MGM die ongecorreleerde markers onderstelt. In many (bio)-medical studies, a set of outcomes has been measured at various points in time. The modeling of these so-called multivariate longitudinal profiles is the central theme of this thesis. Various situations have been discussed in which a model is needed joining all longitudinally measured outcomes. Chapter 1 gives an overview of joint modeling strategies. The choice for the multivariate mixed model (MMM) as joint model is mainly motivated by its ease to use within a discriminant analysis framework, and by its flexibility to handle unbalanced data and to combine outcomes of different types. The MMM is constructed by specifying univariate mixed models for each of the longitudinally measured outcomes, and by joining these models through a common distribution for the random effects. In Chapter 2, the use of mixed models for discriminant analysis purposes has been discussed within a univariate longitudinal context. Using measurements of the prostate specific antigen as a marker for prostate cancer, it has been shown that the involved groups can be described using different types of mixed models, more specifically, linear mixed and nonlinear mixed models. A critical study, presented in Chapter 3, indicates that the use of a MMM might lead to invalid conclusions about the association structure in multivariate longitudinal data. This has been shown through the use of a bivariate linear mixed model to describe longitudinal measurements of hearing thresholds taken at two signal frequencies. Two aspects of the association structure have been distinguished: the association of the evolution and the evolution of the association. For both aspects, assumptions about the error components in the model, had a major impact on the drawn conclusions. The more outcomes are involved in a MMM, the sooner it becomes impossible to fit the MMM. Therefore, a computational strategy has been developed in Chapter 4 to fit MMMs of a higher dimension. The core of this new strategy consists of avoiding the complexitity of the MMM by fitting all possible pairwise mixed models. Estimates for the parameters in the MMM were obtained by averaging over the results of all pairs. Pseudolikelihood theory has been used for inferential purposes. The new approach, denoted as the pairwise approach , is applicable irrespective the number of outcomes, and the type of involved univariate mixed models. Simulation studies and some analytical results, presented in Chapter 5, have shown that the estimates obtained with the pairwise approach are unbiased, and that the efficiency loss will be minor in most practical situations. In Chapter 6, the new approach has been applied in a non-longitudinal setting. Using multivariate repeated binary data from a questionnaire, parameters have been estimated for a MMM combining seven generalised linear mixed models. As such, the relevance of the new approach for a class of psychometric models has been shown. Chapter 7 contains a synthesis of various aspects of the thesis. In this chapter, longitudinal profiles of four markers are used to assess the risk of losing a renal graft. As such, the analysis is a multivariate extension of the discriminant analysis approach presented in Chapter 2. The pairwise approach has been used to fit the MMMs describing the longitudinal evolution of the four markers. It has been shown that using a MMM allowing the markers to be correlated, outperforms other strategies who rely on the use of one single marker or assume uncorrelated markers. In vele (bio)medische studies wordt op verschillende tijdstippen een set markers gemeten. Neem als voorbeeld een patient die een niertransplant heeft ondergaan. Een dergelijke patient wordt gedurende de jaren na de operatie intensief opgevolgd. Tijdens elke controle worden fysiologische en biochemische metingen uitvoerd, zoals haematocriet niveau, bloeddruk, serum creatinine en proteine niveau in de urine. Verschillende redenen bestaan om dergelijke multivariate longitudinale profielen simultaan te modelleren. Voorbeelden zijn de constructie van statistische testen die betrekking hebben op meerdere markers tegelijkertijd en de studie van de longitudinale associatiestructuur tussen de markers. Om verscheidene longitudinale markers gezamelijk te modelleren, hanteren we multivariaat gemengde modellen (MGM). Het voordeel van een gemengd model is dat niet alle patienten op dezelfde tijdstippen moeten gemeten worden en dat het aantal metingen per patient mag verschillen tussen de patienten. Hét kenmerk van een gemengd model is dat zowel een gemiddelde evolutie over de tijd wordt beschreven (door de ‘vaste effecten’ in het model), alsook de subject-specifieke evoluties (de ‘random effecten’ in het model). Bij de constructie van een MGM wordt eerst per marker een univariaat gemengd model gespecifieerd. Deze univariate modellen worden samengevoegd door toe te laten dat al de ‘random effecten’ van de verschillende univariate modellen onderling gecorreleerd zijn. Een belangrijk voordeel van een MGM is dat markers van een verschillend type (bv. continu en binair) samen kunnen gemodelleerd worden. Bovendien kunnen zelfs verschillende types van gemengde modellen (bv. een lineair gemengd en een niet-lineair gemengd model) met elkaar gecombineerd worden. De aantrekkingskracht van de modelformulering van een MGM staat echter in schril contrast met de computationele problemen die opduiken als de parameters in een MGM moeten worden geschat. Immers, naarmate het aantal markers toeneemt, wordt het moeilijk of zelfs onmogelijk om een MGM te fitten. Om dit probleem op te lossen, ontwikkelden we een nieuwe computationele strategie, die bestaat uit het fitten van alle paarsgewijze gemengde modellen die door een MGM worden geïmpliceerd. Een MGM voor vier markers wordt bijvoorbeeld ‘vervangen’ door zes gemengde modellen, die telkens 2 markers combineren. Een methode werd ontwikkeld om de resultaten van de paarsgewijze modellen te combineren tot geschikte schatters (en hun varianties) van de parameters in het MGM. De nieuwe strategie werd toegepast op de analyse van hoog-dimensionele longitudinale metingen van gehoorsdrempels, de analyse van markers van uiteenlopend type afkomstig van patienten met een niertransplant, en de analyse van binaire vragenlijstgegevens, verzameld in een niet-longitudinale context. Speciale aandacht werd besteed aan discriminantanalyse toepassingen, waarin (multivariate) longitudinale data worden gebruikt om zo snel mogelijk te anticiperen op een toekomstig event (bv., nierfaling, optreden van prostaatkanker).
Choose an application
Stroke is a major health burden throughout Europe and consumes a large amount of health care resources.1 Great differences exist in stroke management and outcome in Europe. Optimal models for delivery of stroke care, resulting in optimal outcome at reasonable cost are of great importance.1 Our understanding of the components of inpatient stroke rehabilitation that are critical for patients’ outcome is still limited. Comparing practice and outcome across European countries may give clues that can help to develop new hypotheses and intervention strategies. Therefore, longitudinal long-term follow-up studies are needed to monitor the progress of individual patients, to assess the performance of hospital and community services and to evaluate intervention.2 Optimally, such research should take place in a multi-centre study in a collaborative framework. The overall aim of this doctoral thesis was to identify components of inpatient stroke rehabilitation that have an impact on patients’ recovery. Therefore three studies were set up in four European rehabilitation centres (BE, UK, CH, DE). The findings of these studies are summarized below. In study 1 , the use of time of stroke patients while in the rehabilitation centre was documented. In each centre, 60 patients were monitored during 30 time sampling sessions: 10 morning (7.00 am-12.00 noon), 10 afternoon (12.00 noon-5.00 pm) and 10 evening sessions (5.00 pm-10.00 pm). Therapy time was minimal in the evening session. Therefore, the data of the evening sessions were not included in statistical analysis. The data of morning and afternoon sessions were analyzed with a generalized estimating equation model, controlling for serial dependency of the data and for confounders as age, initial motor and functional deficit. The main significant finding was that patients in the UK centre spent significantly less time in therapy compared to the other centres. The average absolute time in therapy was 1 hour in the UK centre, 2 hours in the Belgian centre, 2 hours 20 minutes in the German centre and 2 hours and 46 minutes in the Swiss centre. Low therapy time in the UK centre was in contrast to the time available for patients from all professional groups. A possible explanation may be the different division of tasks. Participant observations indicated that professionals in the UK centre spent more time in legally required administration, leaving less time for patient care. In all four centres, physiotherapy and occupational therapy together accounted for more than half the total therapy time. Compared with the other centres, patients in the UK centre spent less time in occupational therapy, but received more nursing care. This was probably the results of the high nurse staff levels. Sports-related activities and autonomous exercising were rarely observed in any centre, suggesting a potential for self-directed remedial therapy. Overall, this study revealed that in the participating centres, stroke patients spent a large amount of the day in their rooms, inactive, and without any interaction. Sitting, lying and sleeping accounted for a third to half of the day. The evidence that more intensive rehabilitation improves outcome after stroke3 was not reflected in the rehabilitation practice observed. Still, great differences occurred across the centres with patients in the UK and Belgian centres spending less time in therapy compared to patients in the Swiss and German centres. The latter centres had a more structured rehabilitation program. This may have resulted in more therapy time and a more challenging environment for the patients, physically and mentally. Therapy time devoted to stroke patients in a rehabilitation setting seems to be more dependent on the management style than on the number of staff available. In study 2 , the content of physiotherapy and occupational therapy for stroke patients was compared across the centres. First a scoring list was developed to define the content of individual physiotherapy and occupational therapy sessions for stroke patients. The therapeutic categories of the list were based on previous lists,4,5 neurological textbooks of stroke rehabilitation6 and existing videotapes of physiotherapy and occupational therapy sessions with stroke patients, made in different European rehabilitation centres. The list was finalized considering the suggestions of five physiotherapists and five occupational therapists, who had more than two years of experience in the field of neurological rehabilitation. The final scoring list consisted of 12 categories and 46 subcategories. An inter-rater reliability study was carried out with the four researchers of the different centres. Comparing the frequency of occurrence of the categories resulted in intra-class correlation coefficients, indicating high reliability for eight categories, good reliability for one category, and fair for two categories. One category was not observed. The developed scoring list was a helpful and reliable tool to unravel and compare the content of individual physiotherapy and occupational therapy sessions for stroke patients in inpatient rehabilitation settings in various European countries. The results encourage further use of the list in future research and practice aiming to improve evidence-based stroke rehabilitation. In a second phase, the list was used to compare the content of physiotherapy and occupational therapy sessions between the four rehabilitation centres. Every researcher scored 15 physiotherapy and 15 occupational therapy sessions, recorded in their own centre. Patients with different impairments might receive different treatments. Therefore therapy sessions were recorded from stroke patients fitting predetermined clinical criteria. This was done to cover the full spectrum of potential disabilities and to ensure an equivalent patient group in each centre. Additionally the data was pooled over the centres to compare the content of both therapeutic disciplines. Data were analyzed using a generalized estimating equation model controlling for serial dependency of the data and for confounders as age and duration of the treatment session. Comparison of physiotherapy and occupational therapy between centres revealed significant differences for only two of the twelve categories. Ambulatory exercises occurred more often in the physiotherapy sessions in the Belgian and UK centres and relearning selective movements occurred less in the physiotherapy and occupational therapy sessions in the UK centre. Comparison of the two therapeutic disciplines on the pooled data of the four centres, revealed that ambulatory exercises, transfers, exercises & balance in standing and lying occurred significantly more often in the physiotherapy sessions. ADL, domestic and leisure activities and sensory, perceptual training & cognition occurred significantly more often in the occupational therapy sessions. This study revealed that the content of each therapeutic discipline was consistent between the four centres. Physiotherapy and occupational therapy proved to be distinct professions with clear demarcation of roles. In study 3, motor and functional recovery patterns were compared across centres. In the four centres, 532 stroke patients were recruited. On admission to the centre and at two, four and six months after stroke the Barthel Index (BI)7 and Rivermead Motor Assessment-Gross Function (RMA-GF)8 were assessed. At two, four and six months, also the Nottingham Extended Activities of Daily Living (NEADL)9 was assessed. The statistical comparison of the recovery patterns across centres over time required an adjustment for case-mix and a mechanism for handling missing data (intention-to-treat analysis). Two other issues that complicated the comparison were the skewed distribution of the outcome variables and the earlier baseline measurement in the UK centre compared to the other centres. Therefore random effects ordinal logistic models were used for the analysis. The results showed that patients in the UK centre were significantly more likely to stay in lower RMA-GF classes compared to patients in the German centre. In the Swiss centre, patients were significantly less likely to stay in lower NEADL classes compared to patients in the UK centre. These findings should be interpreted in view of the previous studies. In chapter 1, we found that overall therapy time in the UK centre was significantly less compared to the other three centers.10 Also time in occupational therapy was significantly less in the UK, compared to the Swiss centre. In all centres, physiotherapy and occupational therapy comprised more than 50% of therapeutic time. In the UK centre, 35% of therapy time consisted of nursing care, which was more than in the other centres. In chapter 2, we reported that the content of physiotherapy and occupational therapy was consistent over the centres. The higher input of therapy in the Swiss and German centres was not related to higher staffing levels, but to a different time allocation of therapists and a strictly timed rehabilitation program for patients and therapists. This formal management led to a higher input of therapy, which in turn resulted in better motor and functional recovery for the patients. In contrast to the results for RMA-GF and NEADL, patients in the UK centre were significantly less likely to stay in lower BI classes compared to those in the German centre. This might be the result of the ceiling effect of the BI, the higher input of nursing care in the UK centre, the emphasis on self care to enable early discharge and the fact that middle band patients can expect more functional gain.11 The recovery patterns of the Belgian patients did not differ significantly from patients in any other centre. In summary, motor and functional recovery in the Swiss and German centres was better compared to the UK centre, with exception of self care recovery in the UK centre. In the German and Swiss centres, patients received noticeably more therapy per day. This higher therapy input was not a consequence of higher staffing levels, but of a more efficient organization of rehabilitation services. This study indicates a potential for further improvement of the services in the UK and Belgian centres without additional cost. In study 4 , the prevalence and predictors of post-stroke affective disorders were documented. Post-stroke depression and anxiety were assessed with the Hospital Anxiety and Depression scale (HADS)12 at two, four and six months after stroke. Based on the original publication, a score >7 on HADS-depression or anxiety subscale (range 0-21) was considered to reflect the syndrome of depression or anxiety, respectively.12 Prevalence and severity were compared across centres using Chi² and Kruskal-Wallis tests, respectively. Predictors and time course of severity of depression and anxiety were examined using linear mixed models on the pooled data. Of the 532 patients enrolled in the study, the HADS was not completed at any time for 27 patients. Consequently, 505 patients were included in the analysis. Overall the prevalence of depression at the several evaluation points varied between 21% and 39%. The overall prevalence of anxiety ranged between 15% and 30%. There was no significant difference in the prevalence or severity of both affective disorders between centres. Therefore we pooled the data from the four centres to examine if the high proportion of depressed and anxious patients at each time point comprised the same individuals. Results showed that patients reporting an affective disorder at six months comprised only half those with an onset before two months. The other half had a later onset. Linear mixed models analyses showed that stroke severity, functional disability, motor impairment and baseline sensory deficit were univariate predictors of severity of both depression and anxiety. Additionally baseline cognitive disorder, dysarthria, pre-stroke Barthel index and age were associated with the severity of depression. In the multivariate models only the initial Barthel Index was retained. After correction for predictive factors, levels of depression were stable over time, while anxiety levels decreased slightly. In conclusion, this study showed that the prevalence and severity of affective disorders after stroke was similar in the four European centres. Monitoring for affective disorders is crucial as many patients risk becoming depressed or anxious in the first 6 months after stroke. The multivariate models suggest a relationship between emotional distress and functional disability after stroke. References 1. Markus H. Variations in care and outcome in the first year after stroke: a Western and Central European perspective. J Neurol Neurosurg Psychiatry. 2004;75:1660-1661. 2. Hewer RL. Outcome measures in stroke. A British view. Stroke. 1990;21(9 Suppl):II52-II55. 3. Kwakkel G, van Peppen R, Wagenaar RC, Wood Dauphinee S, Richards C, Ashburn A, Miller K, Lincoln N, Partrdige C, Wellwood I, Langhorne P. Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke. 2004; 35:2529-2539. 4. Ballinger C, Ashburn A, Low J, Roderick P. Unpacking the black box of therapy – A pilot study to describe occupational therapy and physiotherapy interventions for people with stroke. Clin Rehabil. 1999;13:301-309. Gladman JHF, Juby LC, Clarke PA, Lincoln NB. Survey of a domiciliary stroke rehabilitation service. Clin Rehabil. 1995;9:245-249. 5. Davies PM. Steps to follow. The comprehensive treatment of patients with hemiplegia , Second edition, Springer, 2000. 6. Mahoney FI, Barthel DW. Functional evaluation: the Barthel Index. Md State Med J. 1965;14:61-65. 7. Lincoln N, Leadbitter D. Assessment of motor function in stroke patients. Physiotherapy. 1979; 65:48-51. 8. Nouri FM, Lincoln NB. An extended activity of daily living scale for stroke patients. Clin Rehabil. 1978;1:301-305. 9. De Wit L, Putman K, Dejaeger E, Baert I, Berman B, Bogaerts K, Brinkmann N, Connell L, Feys H, Jenni W, Kaske C, Lesaffre E, Leys M, Lincoln N, Louckx F, Schuback B, Schupp W, Smith B, De Weerdt W. Use of time by stroke patients: a comparison of four European rehabilitation centres. Stroke. 2005 . 36:1977-83. 10. Alexander MP. Stroke rehabilitation outcome. A potential use of predictive variables to establish levels of care. Stroke 1999;25:128-34. 11. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scan. 1983;67:361-370. 12. Horn SD, DeJong G, Ryser DK, Veazie PJ, Teraoka J. Another look at observational studies in rehabilitation research: going beyond the holy grail of the randomized controlled trial. Arch Phys Med Rehabil. 2005;86:S8-S15. Vergelijkende studie van de revalidatie van patiënten met een beroerte in vier Europese landen Het cerebrovasculaire accident (CVA), of beroerte is een belangrijk gezondheidsprobleem in Europa. De multidisciplinaire behandeling van CVA-patiënten in gespecialiseerde ziekenhuisafdelingen resulteert in een daling van het aantal sterfgevallen en verminderde fysieke beperkingen van de patiënt. Er blijken binnen Europa echter grote verschillen te bestaan in de mate van herstel van patiënten met een beroerte. De precieze aspecten van de multidisciplinaire aanpak, die van cruciaal belang zijn voor het herstel zijn onvoldoende gekend. Studies waarbij zowel het herstel van patiënten als de aangeboden dienstverlening gedocumenteerd worden, zijn nodig om onze kennis te verdiepen. Het doel van dit doctoraatsproject was de revalidatieaanpak en de herstelpatronen van CVA-patiënten te vergelijken tussen vier revalidatiecentra die typisch zijn voor de vier Europese landen. De deelnemende centra waren: Universitair Ziekenhuis, Pellenberg (België), City Hospital en Queen’s Medical Centre, Nottingham (Groot-Brittanië), RehaClinic, Zurzach (Zwitserland) en Fachklinik, Herzogenaurach (Duitsland). De resultaten van deze studie tonen aan dat het motorische en functionele herstel van CVA-patiënten minder goed verloopt in het Britse revalidatiecentrum in vergelijking met het Duitse en Zwitserse centrum. De kinesitherapie en ergotherapie die in de vier centra wordt aangeboden is in hoge mate vergelijkbaar. In het Britse centrum ontvingen patiënten echter beduidend minder therapie. Eigenaardig genoeg waren deze verschillen in hoeveelheid aangeboden therapie niet gerelateerd aan verschillen in personeelsbezetting. Het bleek echter dat men in het Duitse en Zwitserse centrum een meer formele en strikte managementstijl hanteerde. Dit resulteerde in een efficiëntere tijdsbesteding van de therapeuten.
Listing 1 - 4 of 4 |
Sort by
|