Narrow your search

Library

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

ULiège (1)

VIVES (1)


Resource type

book (1)


Language

English (1)


Year
From To Submit

2005 (1)

Listing 1 - 1 of 1
Sort by
Classical geometries in modern contexts : geometry of real inner product spaces
Author:
ISBN: 3764373717 3764374322 9783764373719 9786610460083 1280460083 Year: 2005 Publisher: Basel ; Boston : Birkhauser Verlag,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is based on real inner product spaces X of arbitrary (finite or infinite) dimension greater than or equal to 2. With natural properties of (general) translations and general distances of X, euclidean and hyperbolic geometries are characterized. For these spaces X also the sphere geometries of Möbius and Lie are studied (besides euclidean and hyperbolic geometry), as well as geometries where Lorentz transformations play the key role. The geometrical notions of this book are based on general spaces X as described. This implies that also mathematicians who have not so far been especially interested in geometry may study and understand great ideas of classical geometries in modern and general contexts. Proofs of newer theorems, characterizing isometries and Lorentz transformations under mild hypotheses are included, like for instance infinite dimensional versions of famous theorems of A.D. Alexandrov on Lorentz transformations. A real benefit is the dimension-free approach to important geometrical theories. Only prerequisites are basic linear algebra and basic 2- and 3-dimensional real geometry.

Listing 1 - 1 of 1
Sort by