Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Choose an application
Growth Hormone --- Glucose --- Insulin-Like Growth Factor I --- Insulin-Like Growth Factor II --- Insulin-Like Growth Factor Binding Protein 1 --- blood --- administration & dosage --- analysis
Choose an application
Several physiological and pathological conditions cause muscle atrophy. Muscle mass los sis associated with decreased muscle strength and mobility, but mainly contributes to increase morbidity and mortality risk. Glucocorticoids, either administered to treat severe diseases or massively produced in catabolic conditions, represent a common cause of muscle atrophy. The mechanism of their catabolic action is still poorly known and the treatment of the muscle atrophy disappointing. One hypothesis is to consider that Glucocorticoids cause muscle atrophy by impairing local production of muscle growth factors such as IGF-1 and myostatine, respectively, positive and negative regulators of muscle mass. Since Glucocorticoids effectively inhibit IGF-1 and increase myostatine in muscle, these growth factors represent potential attractive therapeutic targets for treatment of muscle atrophy.
The goal of our work was to demonstrate the role of deceased IGF-1 and increased myostatin in the muscle during muscle atrophy caused by Glucocorticoids, as a first step to delineate the therapeutic potential of these growth factors.
In a preliminary step, our work assessed the anabolic effect of IGF-1 gene over expression by electro transfer into the skeletal muscle of hypophysectomized rats. Our results show that IGF-1 gene electro transfer in the tibialis anterior muscle cause muscle hypertrophy, mainly due to myofiber hypertrophy. This gene over expression remained at least for one month and the muscle hypertrophy was still detectable at two months.
Furthermore, we investigated whether IGF-1 gene electro transfer might prevent muscle atrophy caused by Glucocorticoids. Our results show that normalization of muscle IGF-1 levels by IGF-1 gene electro transfer partially prevents muscle atrophy caused by Glucocorticoids. This observation suggests therefore that decreased muscle IGF-1 contributes to Glucocorticoids-related muscle atrophy.
Finally, to unravel the role of increased myostatine levels in the catabolic effect of Glucocorticoids, we characterized the muscle phenotype of mice with myostatin, gene disruption. These investigations revealed that myostatine-null mice show a large and widespread increase in skeletal muscle mass resulting mainly from muscle cell hyperplasia. This model will allow us to delineate the role of myostatine in the muscle atrophy caused by gluco-orticoids. Given its dramatic effect on muscle mass and the possibilities of manipulating its activity, myostatin might represent a new and promising avenue to treat muscle atrophy De nombreuses situations psychologiques et pathologiques sont responsables d’une atrophie musculaire. Cette diminution de la masse musculaire est responsable non seulement d’une perte de force et de mobilité, mais aussi et surtout d’une augmentation du risque de morbidité et de mortalité. Les glucocorticoïdes administrés pour traiter de nombreuses affections ou produits massivement au cours des états hyper cataboliques, constituent une cause fréquente d’atrophie musculaire. Le mécanisme de leur action catabolique est mal connu et le traitement de cette atrophie reste décevant. Une hypothèse serait que les glucocorticoïdes induisent l’atrophie musculaire en altérant la production locale des facteurs de croissance musculaires tels que l’IGF-1 et la myostatine, respectivement régulateurs positif et négatif de la masse musculaire. Comme effectivement les glucocorticoïdes inhibent la production d’IGF-1 et stimulent celle de myostatine, ces facteurs de croissance représentent des cibles thérapeutiques potentielles pour le traitement de l’atrophie musculaire. Le but de notre travail a été de démontrer le rôle de la diminution de l’IGF-1 et l’augmentation de la myostatine dans le muscle au cours de l’atrophie musculaire induite par les glucocorticoïdes.
Dans une étape préliminaire, nous avons évalué l’effet anabolitique de la surexpression musculaire du gène de l’IGF-1 tranfecté par éléctroporation dans le muscle de rats hypophysectomisés. Nos données montrent que la transfection du gène de l’IGF-1 dans le muscle tibial antérieur induit une hypertrophie musculaire, essentiellement secondaire à une hypertrophie des fibres. Cette surexpression de l’IGF-1 persiste au moins un mois après l’électroporation et l’effet hypertrophique musculaire demeure détectable à deux mois.
Nous avons ensuite cherché à savoir si la transfection du gène de l’IGF-1 prévenait l’atrophie musculaire induite par les glucocorticoïdes. Nos expériences montrent que la restauration des taux musculaires d’IGF-1 par transfection du gène de l’IGF-1 prévient partiellement l’atrophie musculaire causée par les glucocorticoïdes, ce qui suggère que la diminution de l’IGF-1 musculaire contribue très probablement à l’atrophie induite par les glucocorticoïdes.
Enfin, pour démontrer le rôle potentiel de l’augmentation de la myostatine dans l’effet catabolique des glucocorticoïdes sur le muscle, nous avons caractérisé une lignée de souris « knock ou » pour le gène de la myostatine. Nos données démontrent que l’invalidation du gène de la myostatine s’accompagne d’une hypertrophie musculaire qui résulte exclusivement d’une hyperplasie des fibres. Ce modèle nous permettra de rechercher le rôle de la myostatine dans l’atrophie induite par les glucocorticoïdes
Insulin-Like Growth Factor I --- Glucocorticoids --- Growth differentiation factor 8 --- Muscular Atrophy
Choose an application
To investigate the relationships between anthropometrical parameters and prealbumin, retinol and IGF-I, in the apparently healthy children, we carried out a study in the Vietnamese children aged from 6 to 60 months. Our study was based on the “sub-clinical vitamin A deficiency” survey in Vietnam (2000). We selected 2 ecological regions contrasted by the largest difference in proportions of anthropometrical z-scores below-2 in comparison with the NCHS reference data. They were the Red River Delta in the north (R2), and the Mekong river delta (R7) in the South of Vietnam. The children of both regions were measured weight, height as well as prealbumin, retinol and IGF-I. CRP values were determined for evaluating the influence of this acute phase reactant protein on values of the anthropological and biological parameters. Given the wide and highly asymmetrical distribution of CRP, in the influence of this parameter was based on the fact that the children had CRP values below or above the upper quartile; CRP distributions were similar in both regions. Weight, height, prealbumin, retinol and IGF-I were computed in z-scores for boys and girls, separately, by using data of region 2, considered as an internal reference. IGF-I increased steadily with age, and was influenced by gender, values being slightly higher in girls than in boys. In contrast, prealbumin and retinol were mostly independent of age and gender. The data analysis was focused on R7, whose Z-score parameters were derived from R2. Z-scores in R7 were considered as abnormal if they were lower than 1.96. Our data showed relatively high proportions of abnormal Z-scores for height and weight in R7 (7-9%), suggesting marginal under nutrition, attributed to a period of several months of poor nutritional and environmental conditions in R7 before the survey. The high proportions of abnormal Z-scores of the anthropological parameters were apparently associated with similarly high proportions of Z-scores of prealbumin and retinol (7-12%). Further analysis showed that the abnormally low prealbumin and retinol levels were associated with high CRP values. Furthermore, there was no significant association between anthropometrical Z-scores and Z-scores of prealbumin or retinol (Spearman’s Rho test;p:0.97; 0.87; 0.97 and 0.43, respectively).
Z-scores were positively associated with Z-scores of weight and height (Spearman’s Rho = 0.13; 0.15 and p = 0.01; p< 0.01, respectively). Even thought the association between anthropometrical Z-scores and IGF-I Z-scores was not very strong, proportions of abnormally low IGF-I Z-scores were found to be significantly higher in the children with abnormally small weight and height Z-scores (ODDS ratio: 8.36; 95 % confidence interval [2.99; 23.39] and ODDS ratio: 6.11; 95% confidence interval [2.13; 17.51], respectively). In this study, we also found that OGF-I was not significantly influenced by elevated CRP values. The percentages of children with abnormal Z-scores of IGF-I in R7 were lower than those of the anthropological parameters, suggesting that IGF-I was a poor indicator of the slightly worst nutritional state of R7 compared to R2.
In conclusion, we report for the first time ranges of prealbumin, retinol and IGF-I in the general population of children without overt disease state aged from 6 to 60 months in 2 ecological regions, in Vietnam. These data could be used as guidelines for future follow-up studies. We could not find any evidence for a relation between anthropological parameters and prealbumin or retinol in these young children. IGF-I levels are age and sex related and exhibit s slight but significant relationship with weight and height for age. The sensitivity of IGF-I changes to modest alterations of the nutritional status seems to be insufficient for its practical use in epidemiological surveys aiming at monitoring small trends in nutritional status of populations
Insulin-Like Growth Factor I --- Prealbumin --- Vitamin A --- Child, Preschool --- Vietnam
Listing 1 - 4 of 4 |
Sort by
|