Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Cell membranes --- Membrane proteins --- Membrane lipids --- Biological transport
Choose an application
Membrane fusion and targeting processes are tightly regulated and coordinated. Dozens of proteins, originating from both the cytoplasm and membranes are involved. The discovery of homologous proteins from yeast to neurons validates a unified view. Although much is known about the interfering proteins, the events occurring when two lipid bilayers actually fuse are less clear. It should be remembered that lipid bilayers behave like soap-bubbles fusing when meeting each other. In this respect interfering proteins should be considered as preventing undesirable and unnecessary fusion and eventually directing the biological membrane fusion process (when, where, how, and overcoming the activation energy). In this latest volume in the renowned Subcellular Biochemistry series, some aspects of fusion of biological membranes as well as related problems are presented. Although not complete, there is a lot of recent information including on virus-induced membrane fusion. The contributors of the chapters are all among the researchers who performed many of the pioneering studies in the field.
Biomembranes --- Membrane fusion. --- Membranes (Biology) --- Cytology. --- Biochemistry. --- Neurosciences. --- Cell Biology. --- Biochemistry, general. --- Cell biology. --- Neural sciences --- Neurological sciences --- Neuroscience --- Medical sciences --- Nervous system --- Biological chemistry --- Chemical composition of organisms --- Organisms --- Physiological chemistry --- Biology --- Chemistry --- Cell biology --- Cellular biology --- Cells --- Composition --- Fusion, Membrane --- Cell membranes
Choose an application
This study asserts that cellular and intracellular membranes are active in every aspect of the body's physiology and pathophysiology. It compares secondary through to quaternary structures and protein sequences and gauges their influence on health, disease and drug therapy. The book highlights the importance of correlations, homologies and categorizing multifunctionality by domain and complex.
Membrane disorders. --- Cell membranes. --- Drugs --- Protein binding. --- Binding, Protein --- Biochemistry --- Allosteric proteins --- Radioligand assay --- Medicaments --- Medications --- Medicine (Drugs) --- Medicines (Drugs) --- Pharmaceuticals --- Prescription drugs --- Bioactive compounds --- Medical supplies --- Pharmacopoeias --- Chemotherapy --- Materia medica --- Pharmacology --- Pharmacy --- Cell surfaces --- Cytoplasmic membranes --- Plasma membranes --- Plasmalemma --- Membranes (Biology) --- Glycocalyces --- Biological transport disorders --- Disorders of membranes --- Membrane pathology --- Membrane transport disorders --- Diseases --- Physiological transport. --- Pharmacology. Therapy --- Clinical chemistry
Choose an application
Botanical chemistry --- Plant molecular biology --- Chimie végétale --- Biologie moléculaire végétale --- Botanical chemistry. --- Plant molecular biology. --- Membrane cellulaire --- cell membranes --- Organite cellulaire --- Cytoplasmic organelles --- Division cellulaire --- cell division --- Acide aminé --- Amino acids --- Protéine végétale --- Plant protein --- Métabolisme énergétique --- Biosynthèse --- Biosynthesis --- Développement biologique --- biological development --- Relation hôte parasite --- Host parasite relations --- Transport des substances nutritives --- Nutrient transport --- 581.1 --- #ABIB:atte --- Molecular phytobiology --- Phytobiology, Molecular --- Phytochemistry --- Plant biochemistry --- Plant chemistry --- Phytochemicals --- Plant biochemical genetics --- 581.1 Plant physiology --- Chimie végétale --- Biologie moléculaire végétale --- 577.1 --- 577.2 --- #WPLT:bioc --- Botany --- Molecular biology --- Biochemistry --- Plant physiology --- 577.2 Molecular bases of life. Molecular biology --- Molecular bases of life. Molecular biology --- 577.1 Chemical bases of life. Biochemistry and bio-organic chemistry generally --- Chemical bases of life. Biochemistry and bio-organic chemistry generally --- Phytochemistry. Phytobiochemistry --- plant anatomy --- ADN --- DNA --- Energy metabolism --- Photosynthesis --- biochemistry --- Plant diseases --- Plant response --- DNA. --- PLANTS --- PLANT BIOCHEMISTRY --- MOLECULAR BIOLOGY --- TEXTBOOKS
Choose an application
This book, a follow-up to the editors' Synaptic Plasticity (MIT Press,1993), reports on the most recent trends in the field. The levels of analysis range from molecular to cellular and network, the unifying theme being the nature of the relationships between synaptic plasticity and information processing and storage.Many neurons exhibit plasticity; that is, they can change structurally or functionally, often in a lasting way. Plasticity is evident in such diverse phenomena as learning and memory, brain development, drug tolerance, sprouting of axon terminals after a brain lesion, and various cellular forms of activity-dependent synaptic plasticity such as long-term potentiation and long-term depression. This book, a follow-up to the editors' Synaptic Plasticity (MIT Press, 1993), reports on the most recent trends in the field. The levels of analysis range from molecular to cellular and network, the unifying theme being the nature of the relationships between synaptic plasticity and information processing and storage.ContributorsYael Amitai, Michel Baudry, Theodore W. Berger, Pierre-Alain Buchs, A.K. Butler, Franck A. Chaillan, Gilbert A. Chauvet, Marie-Francoise Chesselet, Barry W. Connors, Taraneh Ghaffari, Jay R. Gibson, Ziv Gil, Michel Khrestchatisky, Dietmar Kuhl, Carole E. Landisman, Gilles Laurent, Jim-Shih Liaw, David J. Linden, Katrina MacLeod, Henry Markram, W.V. Morehouse, Dominique Muller, J.A. Napieralski, Santiago Rivera, Francois S. Roman, Bernard Soumireu-Mourat, Oswald Steward, Mark Stopfer, F.G. Szele, Richard F. Thompson, Nicolas Toni, Bernard Truchet, Misha Tsodyks, K. Uryu, Ascher Uziel, Christopher S. Wallace, Yun Wang, Michael Wehr, Paul F. Worley, Xiaping Xie
Synapses --- Synapse --- Cell Components --- Cell Component --- Cellular Structure --- Component, Cell --- Components, Cell --- Structure, Cellular --- Structures, Cellular --- Cell Membrane Structure --- Membrane Structure, Cell --- Membrane Structures, Cell --- Structure, Cell Membrane --- Structures, Cell Membrane --- Cell Junctions --- Cell Junction --- Intercellular Junction --- Junction, Cell --- Junction, Intercellular --- Junctions, Cell --- Junctions, Intercellular --- Nervous System Physiological Processes --- Intercellular Junctions --- Nervous System --- Anatomy --- Cell Membrane Structures --- Nervous System Physiological Phenomena --- Musculoskeletal and Neural Physiological Phenomena --- Cell Membrane --- Phenomena and Processes --- Cellular Structures --- Cells --- Neuronal Plasticity --- Human Anatomy & Physiology --- Health & Biological Sciences --- Neuroscience --- Synaptic Transmission --- Axon Pruning --- Axonal Pruning --- Dendrite Arborization --- Dendrite Pruning --- Dendritic Arborization --- Dendritic Pruning --- Dendritic Remodeling --- Neural Plasticity --- Neurite Pruning --- Neuronal Arborization --- Neuronal Network Remodeling --- Neuronal Pruning --- Neuronal Remodeling --- Neuroplasticity --- Synaptic Plasticity --- Synaptic Pruning --- Plasticity, Neuronal --- Arborization, Dendrite --- Arborization, Dendritic --- Arborization, Neuronal --- Arborizations, Dendrite --- Arborizations, Dendritic --- Arborizations, Neuronal --- Axon Prunings --- Axonal Prunings --- Dendrite Arborizations --- Dendrite Prunings --- Dendritic Arborizations --- Dendritic Prunings --- Dendritic Remodelings --- Network Remodeling, Neuronal --- Network Remodelings, Neuronal --- Neural Plasticities --- Neurite Prunings --- Neuronal Arborizations --- Neuronal Network Remodelings --- Neuronal Plasticities --- Neuronal Prunings --- Neuronal Remodelings --- Neuroplasticities --- Plasticities, Neural --- Plasticities, Neuronal --- Plasticities, Synaptic --- Plasticity, Neural --- Plasticity, Synaptic --- Pruning, Axon --- Pruning, Axonal --- Pruning, Dendrite --- Pruning, Dendritic --- Pruning, Neurite --- Pruning, Neuronal --- Pruning, Synaptic --- Prunings, Axon --- Prunings, Axonal --- Prunings, Dendrite --- Prunings, Dendritic --- Prunings, Neurite --- Prunings, Neuronal --- Prunings, Synaptic --- Remodeling, Dendritic --- Remodeling, Neuronal --- Remodeling, Neuronal Network --- Remodelings, Dendritic --- Remodelings, Neuronal --- Remodelings, Neuronal Network --- Synaptic Plasticities --- Synaptic Prunings --- Cell Plasticity --- Cell --- Cell Biology --- Cytoplasmic Membrane --- Plasma Membrane --- Cell Membranes --- Cytoplasmic Membranes --- Membrane, Cell --- Membrane, Cytoplasmic --- Membrane, Plasma --- Membranes, Cell --- Membranes, Cytoplasmic --- Membranes, Plasma --- Plasma Membranes --- Membranes --- Musculoskeletal and Neural Physiological Concepts --- Musculoskeletal and Neural Physiological Phenomenon --- Musculoskeletal and Neural Physiology --- Nervous System Physiological Concepts --- Nervous System Physiological Phenomenon --- Nervous System Physiological Process --- Physiology, Nervous System --- Nervous System Physiologic Processes --- Nervous System Physiology --- System Physiology, Nervous --- Anatomies --- Nervous Systems --- System, Nervous --- Systems, Nervous --- Cell Communication --- physiology --- Brain Plasticity --- Brain Plasticities --- Plasticities, Brain --- Plasticity, Brain --- Neuroplasticity. --- NEUROSCIENCE/General --- Nervous system plasticity --- Neural adaptation --- Neural plasticity --- Neuronal adaptation --- Neuronal plasticity --- Plasticity, Nervous system --- Soft-wired nervous system --- Synaptic plasticity --- Adaptation (Physiology) --- Neurophysiology --- Developmental neurobiology --- Cerveau --- Système nerveux --- Plasticité neuronale.
Listing 1 - 5 of 5 |
Sort by
|