Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Microwave circuits --- Microwave devices --- Microwaves --- Microwave circuits. --- Microwave devices. --- Microwaves.
Choose an application
Choose an application
Choose an application
Employed in a large number of commercial electromagnetic simulation packages, the finite element method is one of the most popular and well-established numerical techniques in engineering. This book covers the theory, development, implementation, and application of the finite element method and its hybrid versions to electromagnetics. FINITE ELEMENT METHOD FOR ELECTROMAGNETICS begins with a step-by-step textbook presentation of the finite method and its variations then goes on to provide up-to-date coverage of three dimensional formulations and modern applications to open and closed domain problems. Worked out examples are included to aid the reader with the fine features of the method and the implementation of its hybridization with other techniques for a robust simulation of large scale radiation and scattering. The crucial treatment of local boundary conditions is carefully worked out in several stages in the book. Sponsored by: IEEE Antennas and Propagation Society.
Finite element method. --- Electromagnetism. --- Engineering mathematics. --- Electromagnetic fields --- Finite element method --- Antennas (Electronics) --- Microwave circuits --- Electrons --- Electrical & Computer Engineering --- Engineering & Applied Sciences --- Electrical Engineering --- Mathematical models --- Scattering
Choose an application
Employed in a large number of commercial electromagnetic simulation packages, the finite element method is one of the most popular and well-established numerical techniques in engineering. This book covers the theory, development, implementation, and application of the finite element method and its hybrid versions to electromagnetics. FINITE ELEMENT METHOD FOR ELECTROMAGNETICS begins with a step-by-step textbook presentation of the finite method and its variations then goes on to provide up-to-date coverage of three dimensional formulations and modern applications to open and closed domain problems. Worked out examples are included to aid the reader with the fine features of the method and the implementation of its hybridization with other techniques for a robust simulation of large scale radiation and scattering. The crucial treatment of local boundary conditions is carefully worked out in several stages in the book. Sponsored by: IEEE Antennas and Propagation Society.
Finite element method. --- Electromagnetism. --- Engineering mathematics. --- Electromagnetic fields --- Finite element method --- Antennas (Electronics) --- Microwave circuits --- Electrons --- Electrical & Computer Engineering --- Engineering & Applied Sciences --- Electrical Engineering --- Mathematical models --- Scattering --- Microwave circuits. --- Champs électromagnétiques --- Méthode des éléments finis --- Antennes (Electronique) --- Circuits pour micro-ondes --- Mathematical models. --- Scattering. --- Modèles mathématiques --- Antennas (Electronics). --- 517.96 --- 517.96 Finite differences. Functional and integral equations --- Finite differences. Functional and integral equations --- Circuits, Microwave --- Electronic circuits --- Microwave devices --- FEA (Numerical analysis) --- FEM (Numerical analysis) --- Finite element analysis --- Numerical analysis --- Isogeometric analysis --- Electron-positron scattering --- Electron scattering --- Scattering (Physics) --- Electronic apparatus and appliances --- Electromagnetic fields - Mathematical models. --- Electrons - Scattering.
Listing 1 - 5 of 5 |
Sort by
|