Listing 1 - 10 of 716 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
The aim of this research monograph is to present a general account of the applicability of elliptic variational inequalities to the important class of free boundary problems of obstacle type from a unifying point of view of classical Mathematical Physics. The first part of the volume introduces some obstacle type problems which can be reduced to variational inequalities. Part II presents some of the main aspects of the theory of elliptic variational inequalities, from the abstract hilbertian framework to the smoothness of the variational solution, discussing in general the properties of the free boundary and including some results on the obstacle Plateau problem. The last part examines the application to free boundary problems, namely the lubrication-cavitation problem, the elastoplastic problem, the Signorini (or the boundary obstacle) problem, the dam problem, the continuous casting problem, the electrochemical machining problem and the problem of the flow with wake in a channel past a profile.
Choose an application
In this volume, a tower of surreal number fields is defined, each being a real-closed field having a canonical formal power series structure and many other higher order properties. Formal versions of such theorems as the Implicit Function Theorem hold over such fields. The Main Theorem states that every formal power series in a finite number of variables over a surreal field has a positive radius of hyper-convergence within which it may be evaluated. Analytic functions of several surreal and surcomplex variables can then be defined and studied. Some first results in the one variable case are derived. A primer on Conway's field of surreal numbers is also given. Throughout the manuscript, great efforts have been made to make the volume fairly self-contained. Much exposition is given. Many references are cited. While experts may want to turn quickly to new results, students should be able to find the explanation of many elementary points of interest. On the other hand, many new results are given, and much mathematics is brought to bear on the problems at hand.
Choose an application
The bulk of this volume consists of invited addresses presented at the Colloquium. These contributions report on recent or ongoing research in some of the mainstream areas of mathematical logic: model theory, both pure and in its applications (to group theory and real algebraic geometry); and proof theory, applied to set theory and diophantine equations. The major novel aspect of the book is the important place accorded to the connections of mathematical logic with the neighboring disciplines: mathematical foundations of computer science, and philosophy of mathematics.
Listing 1 - 10 of 716 | << page >> |
Sort by
|