Listing 1 - 2 of 2 |
Sort by
|
Choose an application
Pétrus n’est plus qu’un nom dans la littérature romantique. Et pourtant Borel est exemplaire en cela qu’il a manqué ce que d’autres ont réussi. Son fourvoiement manifeste la pente intime qui parfois incline l’œuvre vers sa négation. Borel manifeste un destin, une destination « différée » que ses livres pourtant visent avec une ironique ferveur. « Auteur provisoire », il vaut par les signes de démesure, de gaucherie, d’apparat qu’il laisse, comme le rêve de ce qu’il aurait pu écrire (ou vivre). Au geste du Créateur transmettant d’un doigt la vie, il impose un retournement, pour se désigner lui-même, dans une sévère auto-accusation, lieu du procès et de l’excès. Œuvré par son désir inabouti, il révèle ainsi comme malgré lui l’arrière-fond inquiet dont l’art souvent résulte. Les bizarreries de son tempérament d’écrivain témoignent alors d’un insupportable pressentiment : et si la littérature était perdue - à moins qu’elle ne soit là pour dire, en créant, la perte même !
Borel, Petrus --- Criticism and interpretation --- Critique et interprétation --- Borel, Pétrus, --- Critique et interprétation --- Borel d'Hauterive, Pierre Joseph, --- Hauterive, Pierre Joseph Borel d', --- Lycanthrope, --- D'Hauterive, Pierre Joseph Borel, --- Criticism and interpretation. --- Borel, Pétrus --- Borel, Pétrus, - 1809-1859 - Criticism and interpretation --- Literature (General) --- destin --- romantisme noir --- Borel, Pétrus, - 1809-1859
Choose an application
In this classic work, Anthony W. Knapp offers a survey of representation theory of semisimple Lie groups in a way that reflects the spirit of the subject and corresponds to the natural learning process. This book is a model of exposition and an invaluable resource for both graduate students and researchers. Although theorems are always stated precisely, many illustrative examples or classes of examples are given. To support this unique approach, the author includes for the reader a useful 300-item bibliography and an extensive section of notes.
Semisimple Lie groups. --- Representations of groups. --- Groupes de Lie semi-simples --- Représentations de groupes --- Semisimple Lie groups --- Representations of groups --- Semi-simple Lie groups --- Lie groups --- Group representation (Mathematics) --- Groups, Representation theory of --- Group theory --- Représentations de groupes --- 512.547 --- 512.547 Linear representations of abstract groups. Group characters --- Linear representations of abstract groups. Group characters --- Abelian group. --- Admissible representation. --- Algebra homomorphism. --- Analytic function. --- Analytic proof. --- Associative algebra. --- Asymptotic expansion. --- Automorphic form. --- Automorphism. --- Bounded operator. --- Bounded set (topological vector space). --- Cartan subalgebra. --- Cartan subgroup. --- Category theory. --- Characterization (mathematics). --- Classification theorem. --- Cohomology. --- Complex conjugate representation. --- Complexification (Lie group). --- Complexification. --- Conjugate transpose. --- Continuous function (set theory). --- Degenerate bilinear form. --- Diagram (category theory). --- Dimension (vector space). --- Dirac operator. --- Discrete series representation. --- Distribution (mathematics). --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Existence theorem. --- Explicit formulae (L-function). --- Fourier inversion theorem. --- General linear group. --- Group homomorphism. --- Haar measure. --- Heine–Borel theorem. --- Hermitian matrix. --- Hilbert space. --- Holomorphic function. --- Hyperbolic function. --- Identity (mathematics). --- Induced representation. --- Infinitesimal character. --- Integration by parts. --- Invariant subspace. --- Invertible matrix. --- Irreducible representation. --- Jacobian matrix and determinant. --- K-finite. --- Levi decomposition. --- Lie algebra. --- Locally integrable function. --- Mathematical induction. --- Matrix coefficient. --- Matrix group. --- Maximal compact subgroup. --- Meromorphic function. --- Metric space. --- Nilpotent Lie algebra. --- Norm (mathematics). --- Parity (mathematics). --- Plancherel theorem. --- Projection (linear algebra). --- Quantifier (logic). --- Reductive group. --- Representation of a Lie group. --- Representation theory. --- Schwartz space. --- Semisimple Lie algebra. --- Set (mathematics). --- Sign (mathematics). --- Solvable Lie algebra. --- Special case. --- Special linear group. --- Special unitary group. --- Subgroup. --- Summation. --- Support (mathematics). --- Symmetric algebra. --- Symmetrization. --- Symplectic group. --- Tensor algebra. --- Tensor product. --- Theorem. --- Topological group. --- Topological space. --- Topological vector space. --- Unitary group. --- Unitary matrix. --- Unitary representation. --- Universal enveloping algebra. --- Variable (mathematics). --- Vector bundle. --- Weight (representation theory). --- Weyl character formula. --- Weyl group. --- Weyl's theorem. --- ZPP (complexity). --- Zorn's lemma.
Listing 1 - 2 of 2 |
Sort by
|