Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Quantum chemistry --- fysicochemie --- Molecular orbitals --- Gaussian basis sets (Quantum mechanics) --- 519.218.7 --- Orbitals, Molecular --- Chemical bonds --- Electrons --- Molecules --- Overlap integral --- Valence (Theoretical chemistry) --- Wave mechanics --- Basis sets (Quantum mechanics) --- Gaussian processes and measures --- 519.218.7 Gaussian processes and measures
Choose an application
Ornstein-Uhlenbeck process --- Stochastic partial differential equations --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces --- Differential equations, Partial --- Brownian motion processes --- Gaussian processes --- Stationary processes
Choose an application
Stochastic mechanics is a description of quantum phenomena in classical probabilistic terms. This work contains a detailed account of the kinematics of diffusion processes, including diffusions on curved manifolds which are necessary for the treatment of spin in stochastic mechanics. The dynamical equations of the theory are derived from a variational principle, and interference, the asymptotics of free motion, bound states, statistics, and spin are described in classical terms. In addition to developing the formal mathematical aspects of the theory, the book contains discussion of possible physical causes of quantum fluctuations in terms of an interaction with a background field. The author gives a critical analysis of stochastic mechanics as a candidate for a realistic theory of physical processes, discussing measurement, local causality in the sense of Bell, and the failure of the theory in its present form to satisfy locality.
Diffusion processes. --- Quantum field theory. --- Stochastic processes. --- Markov processes --- Random processes --- Probabilities --- Relativistic quantum field theory --- Field theory (Physics) --- Quantum theory --- Relativity (Physics) --- Bopp-Haag equation. --- Compton wavelength. --- Dankel equation. --- Feynman-Kac formula. --- Fourier transform. --- Gaussian slit. --- Guerra. --- Kappler. --- Kochen. --- Loffredo. --- Morato. --- Ornstein-Uhlenbeck theory. --- Pauli equation. --- Yasue. --- acceleration. --- background field hypothesis. --- conditioned process. --- dissipative dynamics. --- electromagnetism. --- harmonic oscillator. --- hidden variables. --- imaginary time. --- investment strategy. --- locality theorem. --- moment of inertia. --- neighboring point. --- nodes. --- osmotic equation. --- relaxation time. --- scattering theory.
Choose an application
This book discusses some aspects of the theory of partial differential equations from the viewpoint of probability theory. It is intended not only for specialists in partial differential equations or probability theory but also for specialists in asymptotic methods and in functional analysis. It is also of interest to physicists who use functional integrals in their research. The work contains results that have not previously appeared in book form, including research contributions of the author.
Partial differential equations --- Differential equations, Partial. --- Probabilities. --- Integration, Functional. --- Functional integration --- Functional analysis --- Integrals, Generalized --- Probability --- Statistical inference --- Combinations --- Mathematics --- Chance --- Least squares --- Mathematical statistics --- Risk --- A priori estimate. --- Absolute continuity. --- Almost surely. --- Analytic continuation. --- Axiom. --- Big O notation. --- Boundary (topology). --- Boundary value problem. --- Bounded function. --- Calculation. --- Cauchy problem. --- Central limit theorem. --- Characteristic function (probability theory). --- Chebyshev's inequality. --- Coefficient. --- Comparison theorem. --- Continuous function (set theory). --- Continuous function. --- Convergence of random variables. --- Cylinder set. --- Degeneracy (mathematics). --- Derivative. --- Differential equation. --- Differential operator. --- Diffusion equation. --- Diffusion process. --- Dimension (vector space). --- Direct method in the calculus of variations. --- Dirichlet boundary condition. --- Dirichlet problem. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Elliptic operator. --- Elliptic partial differential equation. --- Equation. --- Existence theorem. --- Exponential function. --- Feynman–Kac formula. --- Fokker–Planck equation. --- Function space. --- Functional analysis. --- Fundamental solution. --- Gaussian measure. --- Girsanov theorem. --- Hessian matrix. --- Hölder condition. --- Independence (probability theory). --- Integral curve. --- Integral equation. --- Invariant measure. --- Iterated logarithm. --- Itô's lemma. --- Joint probability distribution. --- Laplace operator. --- Laplace's equation. --- Lebesgue measure. --- Limit (mathematics). --- Limit cycle. --- Limit point. --- Linear differential equation. --- Linear map. --- Lipschitz continuity. --- Markov chain. --- Markov process. --- Markov property. --- Maximum principle. --- Mean value theorem. --- Measure (mathematics). --- Modulus of continuity. --- Moment (mathematics). --- Monotonic function. --- Navier–Stokes equations. --- Nonlinear system. --- Ordinary differential equation. --- Parameter. --- Partial differential equation. --- Periodic function. --- Poisson kernel. --- Probabilistic method. --- Probability space. --- Probability theory. --- Probability. --- Random function. --- Regularization (mathematics). --- Schrödinger equation. --- Self-adjoint operator. --- Sign (mathematics). --- Simultaneous equations. --- Smoothness. --- State-space representation. --- Stochastic calculus. --- Stochastic differential equation. --- Stochastic. --- Support (mathematics). --- Theorem. --- Theory. --- Uniqueness theorem. --- Variable (mathematics). --- Weak convergence (Hilbert space). --- Wiener process.
Listing 1 - 4 of 4 |
Sort by
|