Narrow your search

Library

UAntwerpen (1)

UCLouvain (1)

UGent (1)

UHasselt (1)

ULB (1)

ULiège (1)

UNamur (1)

VUB (1)


Resource type

book (1)


Language

English (1)


Year
From To Submit

1983 (1)

Listing 1 - 1 of 1
Sort by
Nonlinear oscillations dynamical systems, and bifurcations of vector fields
Authors: ---
ISBN: 0387908196 3540908196 1461270200 1461211409 9780387908199 9783540908197 Year: 1983 Volume: 42 Publisher: New York, N.Y. Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

From the reviews: "This book is concerned with the application of methods from dynamical systems and bifurcation theories to the study of nonlinear oscillations. Chapter 1 provides a review of basic results in the theory of dynamical systems, covering both ordinary differential equations and discrete mappings. Chapter 2 presents 4 examples from nonlinear oscillations. Chapter 3 contains a discussion of the methods of local bifurcation theory for flows and maps, including center manifolds and normal forms. Chapter 4 develops analytical methods of averaging and perturbation theory. Close analysis of geometrically defined two-dimensional maps with complicated invariant sets is discussed in chapter 5. Chapter 6 covers global homoclinic and heteroclinic bifurcations. The final chapter shows how the global bifurcations reappear in degenerate local bifurcations and ends with several more models of physical problems which display these behaviors." #Book Review - Engineering Societies Library, New York#1 "An attempt to make research tools concerning 'strange attractors' developed in the last 20 years available to applied scientists and to make clear to research mathematicians the needs in applied works. Emphasis on geometric and topological solutions of differential equations. Applications mainly drawn from nonlinear oscillations." #American Mathematical Monthly#2

Listing 1 - 1 of 1
Sort by