Narrow your search

Library

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

VUB (2)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2006 (1)

2003 (1)

Listing 1 - 2 of 2
Sort by
The traveling salesman problem : a computational study
Authors: --- ---
ISBN: 1283256118 9786613256119 1400841100 9781400841103 0691129932 9780691129938 9781283256117 Year: 2006 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents the latest findings on one of the most intensely investigated subjects in computational mathematics--the traveling salesman problem. It sounds simple enough: given a set of cities and the cost of travel between each pair of them, the problem challenges you to find the cheapest route by which to visit all the cities and return home to where you began. Though seemingly modest, this exercise has inspired studies by mathematicians, chemists, and physicists. Teachers use it in the classroom. It has practical applications in genetics, telecommunications, and neuroscience. The authors of this book are the same pioneers who for nearly two decades have led the investigation into the traveling salesman problem. They have derived solutions to almost eighty-six thousand cities, yet a general solution to the problem has yet to be discovered. Here they describe the method and computer code they used to solve a broad range of large-scale problems, and along the way they demonstrate the interplay of applied mathematics with increasingly powerful computing platforms. They also give the fascinating history of the problem--how it developed, and why it continues to intrigue us.

Keywords

Traveling salesman problem. --- TSP (Traveling salesman problem) --- Combinatorial optimization --- Graph theory --- Vehicle routing problem --- AT&T Labs. --- Accuracy and precision. --- Addition. --- Algorithm. --- Analysis of algorithms. --- Applied mathematics. --- Approximation algorithm. --- Approximation. --- Basic solution (linear programming). --- Best, worst and average case. --- Bifurcation theory. --- Big O notation. --- CPLEX. --- CPU time. --- Calculation. --- Chaos theory. --- Column generation. --- Combinatorial optimization. --- Computation. --- Computational resource. --- Computer. --- Connected component (graph theory). --- Connectivity (graph theory). --- Convex hull. --- Cutting-plane method. --- Delaunay triangulation. --- Determinism. --- Disjoint sets. --- Dynamic programming. --- Ear decomposition. --- Engineering. --- Enumeration. --- Equation. --- Estimation. --- Euclidean distance. --- Euclidean space. --- Family of sets. --- For loop. --- Genetic algorithm. --- George Dantzig. --- Georgia Institute of Technology. --- Greedy algorithm. --- Hamiltonian path. --- Hospitality. --- Hypergraph. --- Implementation. --- Instance (computer science). --- Institute. --- Integer. --- Iteration. --- Linear inequality. --- Linear programming. --- Mathematical optimization. --- Mathematics. --- Model of computation. --- Neuroscience. --- Notation. --- Operations research. --- Optimization problem. --- Order by. --- Pairwise. --- Parameter (computer programming). --- Parity (mathematics). --- Percentage. --- Polyhedron. --- Polytope. --- Pricing. --- Princeton University. --- Processing (programming language). --- Project. --- Quantity. --- Reduced cost. --- Requirement. --- Result. --- Rice University. --- Rutgers University. --- Scientific notation. --- Search algorithm. --- Search tree. --- Self-similarity. --- Simplex algorithm. --- Solution set. --- Solver. --- Source code. --- Special case. --- Stochastic. --- Subroutine. --- Subsequence. --- Subset. --- Summation. --- Test set. --- Theorem. --- Theory. --- Time complexity. --- Trade-off. --- Travelling salesman problem. --- Tree (data structure). --- Upper and lower bounds. --- Variable (computer science). --- Variable (mathematics).

Self-Regularity : A New Paradigm for Primal-Dual Interior-Point Algorithms
Authors: --- ---
ISBN: 1282087606 9786612087608 140082513X 9781400825134 1400814529 9781400814527 9780691091938 0691091935 9780691091921 0691091927 0691091927 Year: 2003 Publisher: Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Research on interior-point methods (IPMs) has dominated the field of mathematical programming for the last two decades. Two contrasting approaches in the analysis and implementation of IPMs are the so-called small-update and large-update methods, although, until now, there has been a notorious gap between the theory and practical performance of these two strategies. This book comes close to bridging that gap, presenting a new framework for the theory of primal-dual IPMs based on the notion of the self-regularity of a function.The authors deal with linear optimization, nonlinear complementarity problems, semidefinite optimization, and second-order conic optimization problems. The framework also covers large classes of linear complementarity problems and convex optimization. The algorithm considered can be interpreted as a path-following method or a potential reduction method. Starting from a primal-dual strictly feasible point, the algorithm chooses a search direction defined by some Newton-type system derived from the self-regular proximity. The iterate is then updated, with the iterates staying in a certain neighborhood of the central path until an approximate solution to the problem is found. By extensively exploring some intriguing properties of self-regular functions, the authors establish that the complexity of large-update IPMs can come arbitrarily close to the best known iteration bounds of IPMs.Researchers and postgraduate students in all areas of linear and nonlinear optimization will find this book an important and invaluable aid to their work.

Keywords

Interior-point methods. --- Mathematical optimization. --- Programming (Mathematics). --- Mathematical optimization --- Interior-point methods --- Programming (Mathematics) --- Civil & Environmental Engineering --- Engineering & Applied Sciences --- Operations Research --- Mathematical programming --- Goal programming --- Algorithms --- Functional equations --- Operations research --- Optimization (Mathematics) --- Optimization techniques --- Optimization theory --- Systems optimization --- Mathematical analysis --- Maxima and minima --- Simulation methods --- System analysis --- 519.85 --- 681.3*G16 --- 681.3*G16 Optimization: constrained optimization; gradient methods; integer programming; least squares methods; linear programming; nonlinear programming (Numericalanalysis) --- Optimization: constrained optimization; gradient methods; integer programming; least squares methods; linear programming; nonlinear programming (Numericalanalysis) --- 519.85 Mathematical programming --- Accuracy and precision. --- Algorithm. --- Analysis of algorithms. --- Analytic function. --- Associative property. --- Barrier function. --- Binary number. --- Block matrix. --- Combination. --- Combinatorial optimization. --- Combinatorics. --- Complexity. --- Conic optimization. --- Continuous optimization. --- Control theory. --- Convex optimization. --- Delft University of Technology. --- Derivative. --- Differentiable function. --- Directional derivative. --- Division by zero. --- Dual space. --- Duality (mathematics). --- Duality gap. --- Eigenvalues and eigenvectors. --- Embedding. --- Equation. --- Estimation. --- Existential quantification. --- Explanation. --- Feasible region. --- Filter design. --- Function (mathematics). --- Implementation. --- Instance (computer science). --- Invertible matrix. --- Iteration. --- Jacobian matrix and determinant. --- Jordan algebra. --- Karmarkar's algorithm. --- Karush–Kuhn–Tucker conditions. --- Line search. --- Linear complementarity problem. --- Linear function. --- Linear programming. --- Lipschitz continuity. --- Local convergence. --- Loss function. --- Mathematician. --- Mathematics. --- Matrix function. --- McMaster University. --- Monograph. --- Multiplication operator. --- Newton's method. --- Nonlinear programming. --- Nonlinear system. --- Notation. --- Operations research. --- Optimal control. --- Optimization problem. --- Parameter (computer programming). --- Parameter. --- Pattern recognition. --- Polyhedron. --- Polynomial. --- Positive semidefinite. --- Positive-definite matrix. --- Quadratic function. --- Requirement. --- Result. --- Scientific notation. --- Second derivative. --- Self-concordant function. --- Sensitivity analysis. --- Sign (mathematics). --- Signal processing. --- Simplex algorithm. --- Simultaneous equations. --- Singular value. --- Smoothness. --- Solution set. --- Solver. --- Special case. --- Subset. --- Suggestion. --- Technical report. --- Theorem. --- Theory. --- Time complexity. --- Two-dimensional space. --- Upper and lower bounds. --- Variable (computer science). --- Variable (mathematics). --- Variational inequality. --- Variational principle. --- Without loss of generality. --- Worst-case complexity. --- Yurii Nesterov. --- Mathematical Optimization --- Mathematics --- Programming (mathematics)

Listing 1 - 2 of 2
Sort by