Listing 1 - 10 of 17 | << page >> |
Sort by
|
Choose an application
Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) technology are promising forms of low-temperature electrochemical power conversion technologies that operate on hydrogen and methanol respectively. Featuring high electrical efficiency and low operational emissions, they have attracted intense worldwide commercialization research and development efforts. These R&D efforts include a major drive towards improving materials performance, fuel cell operation and durability. In situ characterization is essential to improving performance and extending operational
Proton exchange membrane fuel cells. --- Fuel cells --- Research.
Choose an application
Choose an application
Hydrogen --- Fuel cells --- Proton exchange membrane fuel cells --- Economic aspects --- Costs.
Choose an application
Choose an application
Proton exchange membrane fuel cells. --- Proton exchange membrane fuel cells --- PEFCs (Fuel cells) --- PEM fuel cells --- PEMFCs (Fuel cells) --- Polymer electrolyte fuel cells --- Polymer electrolyte membrane fuel cells --- Proton conducting membrane fuel cells --- Fuel cells --- Design and construction.
Choose an application
PEM Fuel Cell Testing and Diagnosis covers the recent advances in PEM (proton exchange membrane) fuel cell systems, focusing on instruments and techniques for testing and diagnosis, and the application of diagnostic techniques in practical tests and operation. This book is a unique source of electrochemical techniques for researchers, scientists and engineers working in the area of fuel cells. Proton exchange membrane fuel cells are currently considered the most promising clean energy-converting devices for stationary, transportation, and micro-power applications due to their
Proton exchange membrane fuel cells -- Testing -- Equipment and supplies. --- Proton exchange membrane fuel cells -- Testing. --- Science -- Energy. --- Proton exchange membrane fuel cells --- Electrical & Computer Engineering --- Engineering & Applied Sciences --- Electrical Engineering --- Testing --- Testing. --- PEFCs (Fuel cells) --- PEM fuel cells --- PEMFCs (Fuel cells) --- Polymer electrolyte fuel cells --- Polymer electrolyte membrane fuel cells --- Proton conducting membrane fuel cells --- Fuel cells
Choose an application
Hydrogen and Fuel Cells Primers is a series focused on Energy applications. Its concise volumes present those coming into this broad and multidisciplinary field with the most recent advances in each of its particular topics. They bring together information that has thus far been scattered in many different sources under one single title, which makes them a useful reference for industry professionals, researchers and graduate students, especially those starting in a new topic of research. This volume, Recent Advances in High Temperature PEM Fuel Cells, provides an up-to-date progress of High Temperature Polymer Electrolyte Membrane Fuel Cells (HTPEMFCs), including three critical subjects for this type of fuel cells: Membrane Electrode Assembly (MEA) development, stack development and systems development. The MEA and stack development sections cover the recent advances in this area and highlight the areas in most need of improvement. The systems development section focuses on stationary systems, mainly Combined Heat and Power (CHP), based on HTPEMFCs. Finally the conclusions summarize the recent advances of HTPEMFCs in all these areas and provide some insights for future developments. Prof. Bruno G. Pollet, Series Editor.
Choose an application
Polymer electrolyte membrane (PEM) fuel cells, which convert the chemical energy stored in hydrogen fuel directly and efficiently to electrical energy with water as the only by-product, have the potential to reduce our energy usage, pollutant emissions, and dependency on fossil fuels. Tremendous efforts have been made so far, particularly during the last couple of decades or so, on advancing the PEM fuel cell technology and fundamental research. In addition to the large number of research and review paper publications, several classic books have been published and are available in the market, which are primarily for introductory level readers. There are, however, very few books that address the graduate-level or advanced aspects of PEM fuel cells and are based on the first principles or conservation laws, dimensionless analysis, time constant evaluation, and numerical simulation by solving partial differential equations. There are abundant knowledge regarding flow, heat transfer, and mass transport in general engineering, which has been successfully extended to the water and thermal management of PEM fuel cells. This book contributes to this aspect of PEM fuel cell technology; that is, it focuses on the fundamental understanding of phenomena or processes involved in PEM fuel cells.
Choose an application
"The book presents the modeling and control of hydrogen-air PEM fuel cell, including simultaneous estimation of the parameters and states, fuzzy cluster modeling, SPM-based predictive control, advanced fuzzy control, etc. MATLAB/Simulink-based modeling and control programs are also discussed in detail. With abundant practical programs and source codes, it is an essential reference for both scientists and industrial engineers"--
Choose an application
Listing 1 - 10 of 17 | << page >> |
Sort by
|