Listing 1 - 10 of 1317 | << page >> |
Sort by
|
Choose an application
The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Machine learning underlies such exciting new technologies as self-driving cars, speech recognition, and translation applications. This substantially revised fourth edition offers new coverage of recent advances in the field in both theory and practice, including developments in deep learning and neutral networks.
Choose an application
Every day we interact with machine learning systems offering individualized predictions for our entertainment, social connections, purchases, or health. These involve several modalities of data, from sequences of clicks to text, images, and social interactions. This book introduces common principles and methods that underpin the design of personalized predictive models for a variety of settings and modalities. The book begins by revising 'traditional' machine learning models, focusing on adapting them to settings involving user data, then presents techniques based on advanced principles such as matrix factorization, deep learning, and generative modeling, and concludes with a detailed study of the consequences and risks of deploying personalized predictive systems. A series of case studies in domains ranging from e-commerce to health plus hands-on projects and code examples will give readers understanding and experience with large-scale real-world datasets and the ability to design models and systems for a wide range of applications.
Choose an application
This book constitutes the proceedings of the Second Decision Science Alliance International Summer Conference, DSA ISC 2024, held in Valencia, Spain, in June 2024. The 33 full papers and 38 short papers included in this book were carefully reviewed and selected from 101 submissions. At the core of DSA ISC’24 are in-depth discussions and analyses across a spectrum of technological domains. Notably, experts shared their knowledge on areas such as Artificial Intelligence & Machine Learning, Mathematical Optimization, Operational Research & Management Science, Statistics, Simulation, and Decision Processes Analysis. Each of these areas represents a key aspect of decision science, contributing to the interdisciplinary nature of the conference.
Choose an application
This book constitutes the proceedings of the Second Decision Science Alliance International Summer Conference, DSA ISC 2024, held in Valencia, Spain, in June 2024. The 33 full papers and 38 short papers included in this book were carefully reviewed and selected from 101 submissions. At the core of DSA ISC’24 are in-depth discussions and analyses across a spectrum of technological domains. Notably, experts shared their knowledge on areas such as Artificial Intelligence & Machine Learning, Mathematical Optimization, Operational Research & Management Science, Statistics, Simulation, and Decision Processes Analysis. Each of these areas represents a key aspect of decision science, contributing to the interdisciplinary nature of the conference.
Choose an application
This proceeding volume will contain a collection of peer-reviewed articles arising from the Data Research Camp 2022. The workshop took place on July 12–15, 2022, at the Venice International University, in the venetian island of San Servolo. The Data Research Camp has been a stimulating experience bringing together 28 early-career researchers in statistics and seven international professors with the common task of developing novel statistical methods for complex brain imaging data. The workshop was motivated by the recent advancements in miniaturized fluorescence microscopy that have made it possible to collect complex data on neuronal responses to stimuli in awake behaving animals. Several ongoing challenges are related to this novel technology including the deconvolution of the temporal signals to extract the spike trains from the noisy calcium data, the estimation of neuronal activation intensity distribution, the spatio-temporal dependence or covariate effect estimation, among others.
Choose an application
Choose an application
Use TensorFlow Enterprise with other GCP services to improve the speed and efficiency of machine learning pipelines for reliable and stable enterprise-level deploymentKey FeaturesBuild scalable, seamless, and enterprise-ready cloud-based machine learning applications using TensorFlow EnterpriseDiscover how to accelerate the machine learning development life cycle using enterprise-grade servicesManage Google’s cloud services to scale and optimize AI models in productionBook DescriptionTensorFlow as a machine learning (ML) library has matured into a production-ready ecosystem. This beginner’s book uses practical examples to enable you to build and deploy TensorFlow models using optimal settings that ensure long-term support without having to worry about library deprecation or being left behind when it comes to bug fixes or workarounds. The book begins by showing you how to refine your TensorFlow project and set it up for enterprise-level deployment. You’ll then learn how to choose a future-proof version of TensorFlow. As you advance, you’ll find out how to build and deploy models in a robust and stable environment by following recommended practices made available in TensorFlow Enterprise. This book also teaches you how to manage your services better and enhance the performance and reliability of your artificial intelligence (AI) applications. You’ll discover how to use various enterprise-ready services to accelerate your ML and AI workflows on Google Cloud Platform (GCP). Finally, you’ll scale your ML models and handle heavy workloads across CPUs, GPUs, and Cloud TPUs. By the end of this TensorFlow book, you’ll have learned the patterns needed for TensorFlow Enterprise model development, data pipelines, training, and deployment.What you will learnDiscover how to set up a GCP TensorFlow Enterprise cloud instance and environmentHandle and format raw data that can be consumed by the TensorFlow model training processDevelop ML models and leverage prebuilt models using the TensorFlow Enterprise APIUse distributed training strategies and implement hyperparameter tuning to scale and improve your model training experimentsScale the training process by using GPU and TPU clustersAdopt the latest model optimization techniques and deployment methodologies to improve model efficiencyWho this book is forThis book is for data scientists, machine learning developers or engineers, and cloud practitioners who want to learn and implement various services and features offered by TensorFlow Enterprise from scratch. Basic knowledge of the machine learning development process will be useful.
Choose an application
Choose an application
Learning how to apply unsupervised algorithms on unlabeled datasets from scratch can be easier than you thought with this beginner's workshop, featuring interesting examples and activities Key Features Get familiar with the ecosystem of unsupervised algorithms Learn interesting methods to simplify large amounts of unorganized data Tackle real-world challenges, such as estimating the population density of a geographical area Book Description Do you find it difficult to understand how popular companies like WhatsApp and Amazon find valuable insights from large amounts of unorganized data? The Unsupervised Learning Workshop will give you the confidence to deal with cluttered and unlabeled datasets, using unsupervised algorithms in an easy and interactive manner. The book starts by introducing the most popular clustering algorithms of unsupervised learning. You'll find out how hierarchical clustering differs from k-means, along with understanding how to apply DBSCAN to highly complex and noisy data. Moving ahead, you'll use autoencoders for efficient data encoding. As you progress, you'll use t-SNE models to extract high-dimensional information into a lower dimension for better visualization, in addition to working with topic modeling for implementing natural language processing (NLP). In later chapters, you'll find key relationships between customers and businesses using Market Basket Analysis, before going on to use Hotspot Analysis for estimating the population density of an area. By the end of this book, you'll be equipped with the skills you need to apply unsupervised algorithms on cluttered datasets to find useful patterns and insights. What you will learn Distinguish between hierarchical clustering and the k-means algorithm Understand the process of finding clusters in data Grasp interesting techniques to reduce the size of data Use autoencoders to decode data Extract text from a large collection of documents using topic modeling Create a bag-of-words model using the CountVectorizer Who this book is for If you are a data scientist who is just getting started and want to learn how to implement machine learning algorithms to build predictive models, then this book is for you. To expedite the learning process, a solid understanding of the Python programming language is recommended, as you'll be editing classes and functions instead of creating them from scratch.
Choose an application
Master expert techniques for building automated and highly scalable end-to-end machine learning models and pipelines in Azure using TensorFlow, Spark, and Kubernetes Key Features Make sense of data on the cloud by implementing advanced analytics Train and optimize advanced deep learning models efficiently on Spark using Azure Databricks Deploy machine learning models for batch and real-time scoring with Azure Kubernetes Service (AKS) Book Description The increase being seen in data volume today requires distributed systems, powerful algorithms, and scalable cloud infrastructure to compute insights and train and deploy machine learning (ML) models. This book will help you improve your knowledge of building ML models using Azure and end-to-end ML pipelines on the cloud. The book starts with an overview of an end-to-end ML project and a guide on how to choose the right Azure service for different ML tasks. It then focuses on Azure Machine Learning and takes you through the process of data experimentation, data preparation, and feature engineering using Azure Machine Learning and Python. You'll learn advanced feature extraction techniques using natural language processing (NLP), classical ML techniques, and the secrets of both a great recommendation engine and a performant computer vision model using deep learning methods. You'll also explore how to train, optimize, and tune models using Azure Automated Machine Learning and HyperDrive, and perform distributed training on Azure. Then, you'll learn different deployment and monitoring techniques using Azure Kubernetes Services with Azure Machine Learning, along with the basics of MLOps—DevOps for ML to automate your ML process as CI/CD pipeline. By the end of this book, you'll have mastered Azure Machine Learning and be able to confidently design, build and operate scalable ML pipelines in Azure. What you will learn Setup your Azure Machine Learning workspace for data experimentation and visualization Perform ETL, data preparation, and feature extraction using Azure best practices Implement advanced feature extraction using NLP and word embeddings Train gradient boosted tree-ensembles, recommendation engines and deep neural networks on Azure Machine Learning Use hyperparameter tuning and Azure Automated Machine Learning to optimize your ML models Employ distributed ML on GPU clusters using Horovod in Azure Machine Learning Deploy, operate and manage your ML models at scale Automated your end-to-end M...
Listing 1 - 10 of 1317 | << page >> |
Sort by
|