Listing 1 - 10 of 315 | << page >> |
Sort by
|
Choose an application
Infinite. --- Set theory --- Infinite
Choose an application
The word 'infinity' usually elicits feelings of awe, wonder, and admiration; the concept infinity has fascinated philosophers and theologians. The author shows how professional mathematicians tame this unwieldy concept, come to terms with it, and use its various aspects as their most powerful tools of the trade. The early chapters are descriptive and intuitive, full of examples that not only illustrate some infinite processes, but that are worth studying for their own sake. Many questions are raised in the beginning, partially answered in various contexts throughout the book, and finally treated with the precision necessary to give the reader an excellent grasp of the fundamental notions used in the calculus as well as in virtually all other mathematical disciplines. The text is peppered with challenging problems whose solutions appear at the end of the book.
Choose an application
Discrete Hilbert-type inequalities including Hilbert's inequality are important in mathematical analysis and its applications. In 1998, the author presented an extension of Hilbert's integral inequality with an independent parameter. In 2004, some new extensions of Hilbert's inequality were presented by introducing two pairs of conjugate exponents and additional independent parameters. Since then, a number of new discrete Hilbert-type inequalities have arisen. In this book, the author explains how to use the way of weight coefficients and introduce specific parameters to build new discrete Hil
Choose an application
SHORTLISTED FOR THE 2017 ROYAL SOCIETY SCIENCE BOOK PRIZE Even small children know there are infinitely many whole numbers - start counting and you'll never reach the end. But there are also infinitely many decimal numbers between zero and one. Are these two types of infinity the same? Are they larger or smaller than each other? Can we even talk about 'larger' and 'smaller' when we talk about infinity? In Beyond Infinity , international maths sensation Eugenia Cheng reveals the inner workings of infinity. What happens when a new guest arrives at your infinite hotel - but you already have an infinite number of guests? How does infinity give Zeno's tortoise the edge in a paradoxical foot-race with Achilles? And can we really make an infinite number of cookies from a finite amount of cookie dough? Wielding an armoury of inventive, intuitive metaphor, Cheng draws beginners and enthusiasts alike into the heart of this mysterious, powerful concept to reveal fundamental truths about mathematics, all the way from the infinitely large down to the infinitely small.
Infinite --- Infinity --- Finite, The
Choose an application
Infinite. --- Infinity --- Finite, The
Choose an application
Choose an application
Most people, when they think of mathematics, think first of numbers and equations-the number (x)=that number (y). But professional mathematicians, in dealing with quantities that can be ordered according to their size, often are more interested in unequal magnitudes that are equal. This book provides an introduction to the fascinating world of inequalities beginning with a systematic discussion of the relation 'greater than' and the meaning of 'absolute values' of numbers, and ending with descriptions of some unusual geometries. In the course of the book, the reader will encounter some of the more famous inequalities in mathematics. Starting with the basic order properties of real numbers, this book carries the reader through the classical inequalities of Cauchy, Minkowsky and Hörder with many variants and applications. The concluding chapter points the way to other metrics in the plane and the interrelations between geometry (convexity) and algebra (inequalities).
Choose an application
"Higher mathematics" once pointed towards the involvement of infinity. This we label analysis. The ancient Greeks had helped it to a first high point when they mastered the infinite. The book traces the history of analysis along the risky route of serial procedures through antiquity. It took quite long for this type of mathematics to revive in our region. When and where it did, infinite series proved the driving force. Not until a good two millennia had gone by, would analysis head towards Greek rigor again. To follow all that trial, error and final accomplishment, is more than studying history: It provides touching, worthwhile access to advanced calculus. Moreover, some steps beyond convergence show infinite series to naturally fit a wider frame.
Series, Infinite. --- Mathematics --- Math --- Science --- Infinite series --- Philosophy --- History.
Choose an application
Products, Infinite. --- Infinite products --- Algebra --- Processes, Infinite --- Processos infinits --- Desigualtats (Matemàtica) --- Fraccions contínues --- Sèries (Matemàtica)
Choose an application
This book constitutes the proceedings of the 2000 Howard conference on "Infinite Dimensional Lie Groups in Geometry and Representation Theory". It presents some important recent developments in this area. It opens with a topological characterization of regular groups, treats among other topics the integrability problem of various infinite dimensional Lie algebras, presents substantial contributions to important subjects in modern geometry, and concludes with interesting applications to representation theory. The book should be a new source of inspiration for advanced graduate students and esta
Infinite dimensional Lie algebras --- Infinite groups --- Infinite-dimensional manifolds --- Lie groups
Listing 1 - 10 of 315 | << page >> |
Sort by
|